On the Laplacian eigenvalues of a graph and Laplacian energy

被引:63
|
作者
Pirzada, S. [1 ]
Ganie, Hilal A. [1 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar 190006, Jammu & Kashmir, India
关键词
Laplacian spectrum; Average degree; Clique number; Laplacian energy; Zagreb index; PI-ELECTRON ENERGY; UPPER-BOUNDS; MOLECULAR-ORBITALS; THRESHOLD GRAPHS; INVARIANT; TREES; SPECTRUM; INDEXES; SUM;
D O I
10.1016/j.laa.2015.08.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph with n vertices, m edges, maximum degree Delta, average degree (d) over bar = 2m/n, clique number omega having Laplacian eigenvalues mu 1, mu 2, ...,mu n-1, mu n = 0. For k (1 <= k <= n), let S-k(G) = Sigma(k)(i=1) mu(i) and let sigma (1 <= sigma <= n - 1) be the number of Laplacian eigenvalues greater than or equal to average degree (d) over bar. In this paper, we obtain a lower bound for S omega-1(G) and an upper bound for S sigma(G) in terms of m, Delta, sigma and clique number omega of the graph. As an application, we obtain the stronger bounds for the Laplacian energy LE(G) = Sigma(n)(i=1) vertical bar mu(i) - (d) over bar vertical bar , which improve some well known earlier bounds. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:454 / 468
页数:15
相关论文
共 50 条
  • [31] On the approximation of Laplacian eigenvalues in graph disaggregation
    Hu, Xiaozhe
    Urschel, John C.
    Zikatanov, Ludmil T.
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (09): : 1805 - 1822
  • [32] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546
  • [33] Some remarks on Laplacian eigenvalues and Laplacian energy of graphs
    Fath-Tabar, Gholam Hossein
    Ashrafi, Ali Reza
    MATHEMATICAL COMMUNICATIONS, 2010, 15 (02) : 443 - 451
  • [34] Laplacian energy of a graph
    Gutman, I
    Zhou, B
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) : 29 - 37
  • [35] On the Laplacian energy of a graph
    Lazic, Mirjana
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (04) : 1207 - 1213
  • [36] On the Laplacian energy of a graph
    Mirjana Lazić
    Czechoslovak Mathematical Journal, 2006, 56 : 1207 - 1213
  • [37] Some Relations Between the Eigenvalues of Adjacency, Laplacian and Signless Laplacian Matrix of a Graph
    Lin, Huiqiu
    Hong, Yuan
    Shu, Jinlong
    GRAPHS AND COMBINATORICS, 2015, 31 (03) : 669 - 677
  • [38] A New Upper Bound for Laplacian Graph Eigenvalues
    Hu, Shengbiao
    INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE, 2008, 1060 : 298 - 301
  • [39] Sharp upper bounds for the Laplacian graph eigenvalues
    Pan, YL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 355 : 287 - 295
  • [40] Remarks on Spectral Radius and Laplacian Eigenvalues of a Graph
    Bo Zhou
    Han Hyuk Cho
    Czechoslovak Mathematical Journal, 2005, 55 : 781 - 790