On the Laplacian eigenvalues of a graph and Laplacian energy

被引:63
|
作者
Pirzada, S. [1 ]
Ganie, Hilal A. [1 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar 190006, Jammu & Kashmir, India
关键词
Laplacian spectrum; Average degree; Clique number; Laplacian energy; Zagreb index; PI-ELECTRON ENERGY; UPPER-BOUNDS; MOLECULAR-ORBITALS; THRESHOLD GRAPHS; INVARIANT; TREES; SPECTRUM; INDEXES; SUM;
D O I
10.1016/j.laa.2015.08.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph with n vertices, m edges, maximum degree Delta, average degree (d) over bar = 2m/n, clique number omega having Laplacian eigenvalues mu 1, mu 2, ...,mu n-1, mu n = 0. For k (1 <= k <= n), let S-k(G) = Sigma(k)(i=1) mu(i) and let sigma (1 <= sigma <= n - 1) be the number of Laplacian eigenvalues greater than or equal to average degree (d) over bar. In this paper, we obtain a lower bound for S omega-1(G) and an upper bound for S sigma(G) in terms of m, Delta, sigma and clique number omega of the graph. As an application, we obtain the stronger bounds for the Laplacian energy LE(G) = Sigma(n)(i=1) vertical bar mu(i) - (d) over bar vertical bar , which improve some well known earlier bounds. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:454 / 468
页数:15
相关论文
共 50 条
  • [21] On a Lower Bound for the Laplacian Eigenvalues of a Graph
    Gary R. W. Greaves
    Akihiro Munemasa
    Anni Peng
    Graphs and Combinatorics, 2017, 33 : 1509 - 1519
  • [22] Upper bounds for the Laplacian graph eigenvalues
    Li, JS
    Pan, YL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (05) : 803 - 806
  • [23] Laplacian eigenvalues of the second power of a graph
    Das, Kinkar Ch.
    Guo, Ji-Ming
    DISCRETE MATHEMATICS, 2013, 313 (05) : 626 - 634
  • [24] The largest two Laplacian eigenvalues of a graph
    Das, KC
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (06): : 441 - 460
  • [25] Upper Bounds for the Laplacian Graph Eigenvalues
    Jiong Sheng LI Yong Liang PAN Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2004, 20 (05) : 803 - 806
  • [26] ON THE MAIN SIGNLESS LAPLACIAN EIGENVALUES OF A GRAPH
    Deng, Hanyuan
    Huang, He
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 381 - 393
  • [27] On upper bounds for Laplacian graph eigenvalues
    Zhu, Dongmei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2764 - 2772
  • [28] On the sum of Laplacian eigenvalues of a signed graph
    Wang, Dijian
    Hou, Yaoping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 : 39 - 52
  • [29] Upper Bounds for the Laplacian Graph Eigenvalues
    Jiong Sheng Li
    Yong Liang Pan
    Acta Mathematica Sinica, 2004, 20 : 803 - 806
  • [30] Graph toughness from Laplacian eigenvalues
    Gu, Xiaofeng
    Haemers, Willem H.
    ALGEBRAIC COMBINATORICS, 2022, 5 (01):