On the Laplacian eigenvalues of a graph and Laplacian energy

被引:63
|
作者
Pirzada, S. [1 ]
Ganie, Hilal A. [1 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar 190006, Jammu & Kashmir, India
关键词
Laplacian spectrum; Average degree; Clique number; Laplacian energy; Zagreb index; PI-ELECTRON ENERGY; UPPER-BOUNDS; MOLECULAR-ORBITALS; THRESHOLD GRAPHS; INVARIANT; TREES; SPECTRUM; INDEXES; SUM;
D O I
10.1016/j.laa.2015.08.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph with n vertices, m edges, maximum degree Delta, average degree (d) over bar = 2m/n, clique number omega having Laplacian eigenvalues mu 1, mu 2, ...,mu n-1, mu n = 0. For k (1 <= k <= n), let S-k(G) = Sigma(k)(i=1) mu(i) and let sigma (1 <= sigma <= n - 1) be the number of Laplacian eigenvalues greater than or equal to average degree (d) over bar. In this paper, we obtain a lower bound for S omega-1(G) and an upper bound for S sigma(G) in terms of m, Delta, sigma and clique number omega of the graph. As an application, we obtain the stronger bounds for the Laplacian energy LE(G) = Sigma(n)(i=1) vertical bar mu(i) - (d) over bar vertical bar , which improve some well known earlier bounds. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:454 / 468
页数:15
相关论文
共 50 条
  • [1] The Eigenvalues and Laplacian Eigenvalues of A Graph
    Wang, Haitang
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 337 - 341
  • [2] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, S.
    Khan, Saleem
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [3] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, Shariefuddin
    Khan, Saleem
    arXiv, 2022,
  • [4] On the Laplacian eigenvalues of a graph
    Li, JS
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 305 - 307
  • [5] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    S. Pirzada
    Saleem Khan
    Computational and Applied Mathematics, 2023, 42
  • [6] EIGENVALUES OF LAPLACIAN OF A GRAPH
    ANDERSON, WM
    MORLEY, TD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A5 - &
  • [7] On Laplacian eigenvalues of a graph
    Zhou, B
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (03): : 181 - 184
  • [8] A relation between the Laplacian and signless Laplacian eigenvalues of a graph
    Saieed Akbari
    Ebrahim Ghorbani
    Jack H. Koolen
    Mohammad Reza Oboudi
    Journal of Algebraic Combinatorics, 2010, 32 : 459 - 464
  • [9] Bounds for the extreme eigenvalues of the laplacian and signless laplacian of a graph
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2012, 182 (6) : 803 - 813
  • [10] A relation between the Laplacian and signless Laplacian eigenvalues of a graph
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jack H.
    Oboudi, Mohammad Reza
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (03) : 459 - 464