Modeling Approaches Reveal New Regulatory Networks in Aspergillus fumigatus Metabolism

被引:2
作者
Acerbi, Enzo [1 ]
Hortova-Kohoutkova, Marcela [2 ]
Choera, Tsokyi [3 ]
Keller, Nancy [3 ]
Fric, Jan [2 ,4 ]
Stella, Fabio [5 ]
Romani, Luigina [6 ]
Zelante, Teresa [6 ]
机构
[1] Nlytics Pte Ltd, Singapore 637551, Singapore
[2] St Annes Univ Hosp Brno, Int Clin Res Ctr, Ctr Translat Med, Brno 65691, Czech Republic
[3] Univ Wisconsin, Dept Med Microbiol & Immunol, Dept Bacteriol, Madison, WI 53706 USA
[4] Inst Hematol & Blood Transfus, Prague 12800, Czech Republic
[5] Univ Milano Bicocca, Dept Informat Syst & Commun, Viale Sarca 336,Bldg U14, I-20126 Milan, Italy
[6] Univ Perugia, Dept Expt Med, I-06132 Perugia, Italy
关键词
Aspergillus fumigatus; tryptophan metabolism; modeling; Bayesian networks; continuous time Bayesian networks; gene network reconstruction; gene network inference; GENE-EXPRESSION;
D O I
10.3390/jof6030108
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Systems biology approaches are extensively used to model and reverse-engineer gene regulatory networks from experimental data. Indoleamine 2,3-dioxygenases (IDOs)-belonging in the heme dioxygenase family-degrade l-tryptophan to kynurenines. These enzymes are also responsible for the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). As such, they are expressed by a variety of species, including fungi. Interestingly, Aspergillus may degrade l-tryptophan not only via IDO but also via alternative pathways. Deciphering the molecular interactions regulating tryptophan metabolism is particularly critical for novel drug target discovery designed to control pathogen determinants in invasive infections. Using continuous time Bayesian networks over a time-course gene expression dataset, we inferred the global regulatory network controlling l-tryptophan metabolism. The method unravels a possible novel approach to target fungal virulence factors during infection. Furthermore, this study represents the first application of continuous-time Bayesian networks as a gene network reconstruction method in Aspergillus metabolism. The experiment showed that the applied computational approach may improve the understanding of metabolic networks over traditional pathways.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 33 条
[1]   Continuous time Bayesian networks identify Prdm1 as a negative regulator of TH17 cell differentiation in humans [J].
Acerbi, Enzo ;
Vigano, Elena ;
Poidinger, Michael ;
Mortellaro, Alessandra ;
Zelante, Teresa ;
Stella, Fabio .
SCIENTIFIC REPORTS, 2016, 6
[2]   Gene network inference using continuous time Bayesian networks: a comparative study and application to Th17 cell differentiation [J].
Acerbi, Enzo ;
Zelante, Teresa ;
Narang, Vipin ;
Stella, Fabio .
BMC BIOINFORMATICS, 2014, 15
[3]   Involvement of Ahr Pathway in Toxicity of Aflatoxins and Other Mycotoxins [J].
Arenas-Huertero, Francisco ;
Zaragoza-Ojeda, Montserrat ;
Sanchez-Alarcon, Juana ;
Milic, Mirta ;
Klaric, Maja Segvic ;
Montiel-Gonzalez, Jose M. ;
Valencia-Quintana, Rafael .
FRONTIERS IN MICROBIOLOGY, 2019, 10
[4]   Ochratoxin A induces CYP3A4, 2B6, 3A5, 2C9, 1A1, and CYP1A2 gene expression in primary cultured human hepatocytes: a possible activation of nuclear receptors [J].
Ayed-Boussema, Imen ;
Pascussi, Jean Marc ;
Zaied, Chiraz ;
Maurel, Patrick ;
Bacha, Hassen ;
Hassen, Wafa .
DRUG AND CHEMICAL TOXICOLOGY, 2012, 35 (01) :71-80
[5]  
Badawy AAB, 2017, INT J TRYPTOPHAN RES, V10, DOI 10.1177/1178646917691938
[6]   Tryptophan-catabolizing enzymes - party of three [J].
Ball, Helen J. ;
Jusof, Felicita F. ;
Bakmiwewa, Supun M. ;
Hunt, Nicholas H. ;
Yuasa, Hajime J. .
FRONTIERS IN IMMUNOLOGY, 2014, 5
[7]   Aryl hydrocarbon receptor control of a disease tolerance defence pathway [J].
Bessede, Alban ;
Gargaro, Marco ;
Pallotta, Maria T. ;
Matino, Davide ;
Servillo, Giuseppe ;
Brunacci, Cinzia ;
Bicciato, Silvio ;
Mazza, Emilia M. C. ;
Macchiarulo, Antonio ;
Vacca, Carmine ;
Iannitti, Rossana ;
Tissi, Luciana ;
Volpi, Claudia ;
Belladonna, Maria L. ;
Orabona, Ciriana ;
Bianchi, Roberta ;
Lanz, Tobias V. ;
Platten, Michael ;
Della Fazia, Maria A. ;
Piobbico, Danilo ;
Zelante, Teresa ;
Funakoshi, Hiroshi ;
Nakamura, Toshikazu ;
Gilot, David ;
Denison, Michael S. ;
Guillemin, Gilles J. ;
DuHadaway, James B. ;
Prendergast, George C. ;
Metz, Richard ;
Geffard, Michel ;
Boon, Louis ;
Pirro, Matteo ;
Iorio, Alfonso ;
Veyret, Bernard ;
Romani, Luigina ;
Grohmann, Ursula ;
Fallarino, Francesca ;
Puccetti, Paolo .
NATURE, 2014, 511 (7508) :184-+
[8]   Using a Bayesian network to clarify areas requiring research in a host-pathogen system [J].
Bower, D. S. ;
Mengersen, K. ;
Alford, R. A. ;
Schwarzkopf, L. .
CONSERVATION BIOLOGY, 2017, 31 (06) :1373-1382
[9]   A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches [J].
Cantone, Irene ;
Marucci, Lucia ;
Iorio, Francesco ;
Ricci, Maria Aurelia ;
Belcastro, Vincenzo ;
Bansal, Mukesh ;
Santini, Stefania ;
di Bernardo, Mario ;
di Bernardo, Diego ;
Cosma, Maria Pia .
CELL, 2009, 137 (01) :172-181
[10]   A Multifaceted Role of Tryptophan Metabolism and indoleamine 2,3-Dioxygenase Activity in Aspergillus fumigatus-Host interactions [J].
Choera, Tsokyi ;
Zelante, Teresa ;
Romani, Luigina ;
Keller, Nancy P. .
FRONTIERS IN IMMUNOLOGY, 2018, 8