Fast and Lightweight Network for Single Frame Structured Illumination Microscopy Super-Resolution

被引:13
作者
Cheng, Xi [1 ,2 ]
Li, Jun [1 ,2 ]
Dai, Qiang [3 ]
Fu, Zhenyong [1 ,2 ]
Yang, Jian [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Key Lab Intelligent Percept & Syst High Dimens, Minist Educ, PCA Lab, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Jiangsu Key Lab Image & Video Understanding Socia, Nanjing 210094, Peoples R China
[3] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215031, Peoples R China
基金
中国博士后科学基金;
关键词
Lighting; Superresolution; Microscopy; Kernel; Convolution; Task analysis; Feature extraction; Image demoireing; structured illumination microscopy (SIM); superresolution; RECONSTRUCTION; RESOLUTION;
D O I
10.1109/TIM.2022.3161721
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Structured illumination microscopy (SIM) is an important super-resolution-based microscopy technique that breaks the diffraction limit and enhances optical microscopy systems. With the development of biology and medical engineering, there is a high demand for real-time and robust SIM imaging under extreme low-light and short-exposure environments. Existing SIM techniques typically require multiple structured illumination frames to produce a high-resolution image. In this article, we propose a single-frame SIM (SF-SIM) based on deep learning. Our SF-SIM only needs one shot of a structured illumination frame and generates similar results compared with the traditional SIM systems that typically require 15 shots. In our SF-SIM, we propose a noise estimator that can effectively suppress the noise in the image and enable our method to work in the low-light and short-exposure environment without the need for stacking multiple frames for nonlocal denoising. We also design a bandpass attention module that makes our deep network more sensitive to the change of frequency and enhances the imaging quality. Our proposed SF-SIM is almost 14 times faster than traditional SIM methods when achieving similar results. Therefore, our method is significantly valuable for the development of microbiology and medicine.
引用
收藏
页数:11
相关论文
共 43 条
[1]  
Abbe E., 1873, Archiv fur Mikroskopische Anatomie, V9, P413, DOI 10.1007/BF02956173
[2]   Single Image Super-Resolution via a Holistic Attention Network [J].
Niu, Ben ;
Wen, Weilei ;
Ren, Wenqi ;
Zhang, Xiangde ;
Yang, Lianping ;
Wang, Shuzhen ;
Zhang, Kaihao ;
Cao, Xiaochun ;
Shen, Haifeng .
COMPUTER VISION - ECCV 2020, PT XII, 2020, 12357 :191-207
[3]   Pre-Trained Image Processing Transformer [J].
Chen, Hanting ;
Wang, Yunhe ;
Guo, Tianyu ;
Xu, Chang ;
Deng, Yiping ;
Liu, Zhenhua ;
Ma, Siwei ;
Xu, Chunjing ;
Xu, Chao ;
Gao, Wen .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12294-12305
[4]   Improved multi-scale dynamic feature encoding network for image demoireing [J].
Cheng, Xi ;
Fu, Zhenyong ;
Yang, Jian .
PATTERN RECOGNITION, 2021, 116
[5]   Zero-Shot Image Super-Resolution with Depth Guided Internal Degradation Learning [J].
Cheng, Xi ;
Fu, Zhenyong ;
Yang, Jian .
COMPUTER VISION - ECCV 2020, PT XVII, 2020, 12362 :265-280
[6]   ML-SIM: universal reconstruction of structured illumination microscopy images using transfer learning [J].
Christensen, Charles N. ;
Ward, Edward N. ;
Lu, Meng ;
Lio, Pietro ;
Kaminski, Clemens F. .
BIOMEDICAL OPTICS EXPRESS, 2021, 12 (05) :2720-2733
[7]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[8]   Online Monitoring of Green Pellet Size Distribution in Haze-Degraded Images Based on VGG16-LU-Net and Haze Judgment [J].
Duan, Jiaxu ;
Liu, Xiaoyan .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[9]   Toward Convolutional Blind Denoising of Real Photographs [J].
Guo, Shi ;
Yan, Zifei ;
Zhang, Kai ;
Zuo, Wangmeng ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1712-1722
[10]   Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination [J].
Gustafsson, MGL ;
Agard, DA ;
Sedat, JW .
THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION PROCESSING VII, 2000, 3919 :141-150