Analysis of μM,D-orthogonal exponentials for the planar four-element digit sets

被引:25
作者
Li, Jian-Lin [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-affine measure; orthogonal exponentials; spectrality; digit set; DENSE ANALYTIC SUBSPACES; SELF-AFFINE MEASURES; ORTHOGONALITY; SPECTRA;
D O I
10.1002/mana.201300009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The self-affine measure mu(M,D) is a unique probability measure satisfying the self-affine identity with equal weight. It only depends upon an expanding matrix M and a finite digit set D. In this paper we study the question of when the L-2(mu(M,D))-space has infinite families of orthogonal exponentials. Such research is necessary to further understanding the spectrality of mu(M,D). For a class of planar four-element digit sets, we present several methods to deal with this question. The application of each method is also given, which extends the known results in a simple manner. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:297 / 312
页数:16
相关论文
共 17 条
[1]   Analysis of orthogonality and of orbits in affine iterated function systems [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (04) :801-823
[2]   Orthogonal exponentials, translations, and Bohr completions [J].
Dutkay, Dorin Ervin ;
Han, Deguang ;
Jorgensen, Palle E. T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (09) :2999-3019
[3]   Quasiperiodic spectra and orthogonality for iterated function system measures [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (02) :373-397
[4]   On the spectra of a Cantor measure [J].
Dutkay, Dorin Ervin ;
Han, Deguang ;
Sun, Qiyu .
ADVANCES IN MATHEMATICS, 2009, 221 (01) :251-276
[5]   Spectral property of the Bernoulli convolutions [J].
Hu, Tian-You ;
Lau, Ka-Sing .
ADVANCES IN MATHEMATICS, 2008, 219 (02) :554-567
[6]  
Jorgensen PET, 2008, APPL NUMER HARMON AN, P217, DOI 10.1007/978-0-8176-4683-7_11
[7]   Dense analytic subspaces in fractal L2-spaces [J].
Jorgensen, PET ;
Pedersen, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :185-228
[8]   On spectral Cantor measures [J].
Laba, I ;
Wang, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 193 (02) :409-420
[9]   Spectra of a class of self-affine measures [J].
Li, Jian-Lin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (04) :1086-1095
[10]   On the μM,D-orthogonal exponentials [J].
Li, Jian-Lin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) :940-951