Hierarchical Voting Experts: An Unsupervised Algorithm for Hierarchical Sequence Segmentation

被引:3
作者
Miller, Matthew [1 ]
Stoytchev, Alexander [1 ]
机构
[1] Iowa State Univ, Dev Robot Lab, Ames, IA 50011 USA
来源
2008 IEEE 7TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING | 2008年
关键词
D O I
10.1109/DEVLRN.2008.4640827
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper extends the Voting Experts (VE) algorithm for unupervised segmentation of sequences to create the Hierarchical Voting Experts (HVE) algorithm for unsupervised segmentation of hierarchically structured sequences. The paper evaluates the strengths and weaknesses of the HVE algorithm to identify its proper domain of application. The paper also shows how higher order models of the sequence data can be used to improve lower level segmentation accuracy.
引用
收藏
页码:186 / 191
页数:6
相关论文
共 17 条
[1]  
[Anonymous], PSYCHOL SCI
[2]  
BRENT MR, 1999, MACHINE LEARNING
[3]  
Cheng JM, 2005, IEEE DATA COMPR CONF, P454
[4]  
COHEN P, 2007, INTELLIGENT DATA ANA
[5]  
Creutz M, 2003, 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P280
[6]   Encoding multielement scenes: Statistical learning of visual feature hierarchies [J].
Fiser, J ;
Aslin, RN .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY-GENERAL, 2005, 134 (04) :521-537
[7]  
FISER J, 2002, J EXPT PSYCHOL
[8]  
GOLDWATER S, 2006, P 21 INT C COMP LING, P673
[9]   WORD SEGMENTATION BY LETTER SUCCESSOR VARIETIES [J].
HAFER, MA ;
WEISS, SF .
INFORMATION STORAGE AND RETRIEVAL, 1974, 10 (11-1) :371-385
[10]  
KEMPE A, 1999, EXPT UNSUPERVISED EN