A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation

被引:58
作者
Chen, Minghua [1 ]
Deng, Weihua [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Space fractional convection diffusion equation; Numerical stability; Crank-Nicolson scheme; Two-dimensional two-sided fractional PDE; Alternating direction implicit method; FINITE-DIFFERENCE APPROXIMATIONS; DISPERSION; DERIVATIVES;
D O I
10.1016/j.apm.2013.11.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Space fractional convection diffusion equation describes physical phenomena where particles or energy (or other physical quantities) are transferred inside a physical system due to two processes: convection and superdiffusion. In this paper, we discuss the practical alternating directions implicit method to solve the two-dimensional two-sided space fractional convection diffusion equation on a finite domain. We theoretically prove and numerically verify that the presented finite difference scheme is unconditionally von Neumann stable and second order convergent in both space and time directions. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3244 / 3259
页数:16
相关论文
共 23 条
[1]  
[Anonymous], 1995, Time-Dependent Problems and Difference Methods
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]   Fractional dispersion, Levy motion, and the MADE tracer tests [J].
Benson, DA ;
Schumer, R ;
Meerschaert, MM ;
Wheatcraft, SW .
TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) :211-240
[4]  
Chen M.H., ARXIV 1304 7425V1
[5]   Numerical algorithm for the time fractional Fokker-Planck equation [J].
Deng, Weihua .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) :1510-1522
[6]  
Freed A.D., 2002, NONLINEAR DYNAM, V29, P3
[7]  
Lapidus L, 1982, NUMERICAL SOLUTION O
[8]   Remarks on fractional derivatives [J].
Li, Changpin ;
Deng, Weihua .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) :777-784
[9]   Numerical approaches to fractional calculus and fractional ordinary differential equation [J].
Li, Changpin ;
Chen, An ;
Ye, Junjie .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (09) :3352-3368
[10]   Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation [J].
Liu, F. ;
Zhuang, P. ;
Anh, V. ;
Turner, I. ;
Burrage, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (01) :12-20