Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries

被引:94
作者
Li, Qing [1 ]
Cao, Ruiguo [2 ]
Cho, Jaephil [2 ]
Wu, Gang [1 ]
机构
[1] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA
[2] Ulsan Natl Inst Sci & Technol, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
关键词
NITROGEN-DOPED GRAPHENE; HIGHLY EFFICIENT ELECTROCATALYST; METAL-ORGANIC FRAMEWORKS; ONION-LIKE CARBON; REDUCTION REACTION; AIR BATTERIES; LI-AIR; LI-O-2; BATTERIES; NANOTUBE ARRAYS; RECENT PROGRESS;
D O I
10.1039/c4cp00225c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although lithium-ion batteries are traditionally considered to be the most promising candidate for electrochemical energy storage owing to their relatively long cycle life and high energy efficiency, their limited energy density as well as high cost are still causing a bottleneck for their long-term applications. Alternatively, rechargeable Li-O-2 batteries have the potential to practically provide 3-5 times the gravimetric energy density of conventional Li-ion batteries. However, the lack of advanced electrode design and efficient electrocatalysts for oxygen reduction-evolution reactions remains as one of the grand challenges before this technology can be commercialized. Among various catalyst formulations, nanocarbon composite materials have been recognized as the most promising ones for Li-O2 batteries because of their reasonable balance among catalytic activity, durability, and cost. In this perspective, the recent progress in the development of nanostructured carbon-based electrocatalysts for nonaqueous Li-O-2 batteries is discussed, including metal-free carbon catalysts, transition-metal-nitrogen-carbon composite catalysts, and transition-metal-compounds/nanocarbon catalysts. The morphology-performance correlations of these catalysts are highlighted, aiming to provide guidance for rationally designing advanced catalysts.
引用
收藏
页码:13568 / 13582
页数:15
相关论文
共 133 条
  • [1] A polymer electrolyte-based rechargeable lithium/oxygen battery
    Abraham, KM
    Jiang, Z
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : 1 - 5
  • [2] Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling
    Albertus, Paul
    Girishkumar, G.
    McCloskey, Bryan
    Sanchez-Carrera, Roel S.
    Kozinsky, Boris
    Christensen, Jake
    Luntz, A. C.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : A343 - A351
  • [3] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [4] Black R., 2013, Angew. Chem. Int. Ed, V125, P410, DOI DOI 10.1002/ANGE201205354
  • [5] Non-Aqueous and Hybrid Li-O2 Batteries
    Black, Robert
    Adams, Brian
    Nazar, L. F.
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (07) : 801 - 815
  • [6] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [7] Lithium-air and lithium-sulfur batteries
    Bruce, Peter G.
    Hardwick, Laurence J.
    Abraham, K. M.
    [J]. MRS BULLETIN, 2011, 36 (07) : 506 - 512
  • [8] Graphene-Based Non-Noble-Metal Catalysts for Oxygen Reduction Reaction in Acid
    Byon, Hye Ryung
    Suntivich, Jin
    Shao-Horn, Yang
    [J]. CHEMISTRY OF MATERIALS, 2011, 23 (15) : 3421 - 3428
  • [9] Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst
    Cao, Ruiguo
    Thapa, Ranjit
    Kim, Hyejung
    Xu, Xiaodong
    Kim, Min Gyu
    Li, Qing
    Park, Noejung
    Liu, Meilin
    Cho, Jaephil
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [10] Recent Progress in Non-Precious Catalysts for Metal-Air Batteries
    Cao, Ruiguo
    Lee, Jang-Soo
    Liu, Meilin
    Cho, Jaephil
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (07) : 816 - 829