A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates

被引:89
作者
Kim, Ko-Eun [1 ]
Jang, Jun Yeong [1 ]
Park, Inbok [1 ]
Woo, Myung-Heui [2 ]
Jeong, Myung-Hwan [2 ]
Shin, Woo Cheol [2 ]
Ue, Makoto [2 ]
Choi, Nam-Soon [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 689798, South Korea
[2] Samsung SDI, Battery R&D Ctr, Suwon 443803, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-ion battery; Graphite; Anode; Electrolyte; Additive; LI-ION BATTERIES; RATE CAPABILITY; ANODE; SULTONE; CELLS;
D O I
10.1016/j.elecom.2015.10.013
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium difluorophosphate (LiDFP) as a reducible additive is employed to overcome the unsatisfactory rate capability and cycling instability of highly pressed graphite electrodes with high mass loading (8.1 mg/cm(2)) with a vinylene carbonate (VC)-derived surface film that hampers the charge transport at the graphite electrolyte interface at high rates. Our investigation reveals that LiDFP modifies the surface chemistry induced by VC and makes a more ionically conductive surface film on graphite, ensuring good rate capability. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 124
页数:4
相关论文
共 14 条
[1]  
Abe K., 2014, ELECTROLYTES LITHIUM, P199
[2]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[3]   High rate capability of graphite negative electrodes for lithium-ion batteries [J].
Buqa, H ;
Goers, D ;
Holzapfel, M ;
Spahr, ME ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A474-A481
[4]   Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries [J].
Eom, Ji-Yong ;
Jung, In-Ho ;
Lee, Jong-Hoon .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9810-9814
[5]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[6]   Modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell [J].
Yerramalla, S ;
Davari, A ;
Feliachi, A ;
Biswas, T .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :104-113
[7]   Prospective materials and applications for Li secondary batteries [J].
Jeong, Goojin ;
Kim, Young-Ugk ;
Kim, Hansu ;
Kim, Young-Jun ;
Sohn, Hun-Joon .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (06) :1986-2002
[8]   Analysis of vinylene carbonate derived SEI layers on graphite anode [J].
Ota, H ;
Sakata, Y ;
Inoue, A ;
Yamaguchi, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (10) :A1659-A1669
[9]   ELECTROCHEMICAL INTERCALATION OF LITHIUM INTO GRAPHITE [J].
SHU, ZX ;
MCMILLAN, RS ;
MURRAY, JJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (04) :922-927
[10]   RECHARGEABLE LITHIUM-ION CELLS USING GRAPHITIZED MESOPHASE-PITCH-BASED CARBON-FIBER ANODES [J].
TAKAMI, N ;
SATOH, A ;
HARA, M ;
OHSAKI, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (08) :2564-2571