Validation of an EEG-Based Algorithm for Automatic Detection of Sleep Onset in the Multiple Sleep Latency Test

被引:0
作者
Estrada, Luis [1 ]
Santamaria, Joan [2 ,3 ,4 ]
Isetta, Valentina [1 ]
Iranzo, Alex [2 ,3 ,4 ]
Navajas, Daniel [1 ,5 ,6 ]
Farre, Ramon [1 ,4 ,5 ]
机构
[1] Univ Barcelona, Fac Med, Unitat Biofis & Bioengn, Barcelona, Spain
[2] Hosp Clin Barcelona, Unitat Multidisciplinar Transtorns Son, Serv Neurol, Barcelona, Spain
[3] CIBERNED, Madrid, Spain
[4] Inst Invest Biomed August Pi Sunyer IDIBAPS, Barcelona, Spain
[5] CIBER Enfermedades Resp CIBERES, Bunyola, Spain
[6] Inst Bioengn Catalunya, Barcelona, Spain
来源
WORLD CONGRESS ON ENGINEERING, WCE 2010, VOL I | 2010年
关键词
Automatic Algorithm; Drowsiness; Electroencephalography; Multiple Sleep Latency Test; Polysomnography; Sleep onset; RELIABILITY; INTERRATER; PARAMETERS; DROWSINESS; FATIGUE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Multiple Sleep Latency Test (MSLT) is a standard test to objectively evaluate patients with excessive daytime sleepiness. Sleep onset latencies are determined by visual analysis, which is costly and time-consuming. The aim of this study was to implement and test a single automatic algorithm to detect the sleep onset in the MSLT on the basis of electroencephalographic (EEG) signals. The designed algorithm computed the relative EEG spectral powers in the occipital area and detected the sleep onset corresponding to the intersection point between the lower and alpha frequencies. The algorithm performance was evaluated by comparing the sleep latencies computed automatically by the algorithm and by a sleep specialist using MSLT recordings from a total of 19 patients (95 naps). The mean difference in sleep latency between the two methods was 0.025 min and the limits of agreement were +/- 2.46 min (Bland-Altman analysis). Moreover, the intra-class correlation coefficient showed a considerable inter-rater reliability (0.90). The algorithm accurately detected the sleep onset in the MSLT. The devised algorithm can be a useful tool to support and speed up the sleep specialist's work in routine clinical MSLT assessment.
引用
收藏
页码:539 / 541
页数:3
相关论文
共 20 条
[1]   INTERRATER RELIABILITY OF THE MULTIPLE SLEEP LATENCY TEST [J].
BENBADIS, SR ;
QU, YS ;
PERRY, MC ;
DINNER, DS ;
WARNES, H .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1995, 95 (04) :302-304
[2]   Automatic analysis of single-channel sleep EEG:: Validation in healthy individuals [J].
Berthomier, Christian ;
Drouot, Xavier ;
Herman-Stoieca, Maria ;
Berthomier, Pierre ;
Prado, Jacques ;
Bokar-Thire, Djibril ;
Benoit, Odile ;
Mattout, Jeremie ;
d'Ortho, Marie-Pia .
SLEEP, 2007, 30 (11) :1587-1595
[3]   STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT [J].
BLAND, JM ;
ALTMAN, DG .
LANCET, 1986, 1 (8476) :307-310
[4]   Interrater and intrarater reliability in multiple sleep latency test [J].
Chen, L. ;
Ho, C. K. W. ;
Lam, V. K. H. ;
Fong, S. Y. Y. ;
Li, A. M. ;
Lam, S. P. ;
Wing, Y. K. .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2008, 25 (04) :218-221
[5]   ROBUST LOCALLY WEIGHTED REGRESSION AND SMOOTHING SCATTERPLOTS [J].
CLEVELAND, WS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (368) :829-836
[6]   Sleep Onset Estimator: Evaluation of Parameters [J].
Cvetkovic, Dean ;
Cosic, Irena .
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, :3860-+
[7]   Detection of sleep onset by analysis of slow eye movements: A preliminary study of MSLT recordings [J].
Fabbri, Margherita ;
Provini, Federica ;
Magosso, Elisa ;
Zaniboni, Anna ;
Bisulli, Antonietta ;
Plazzi, Giuseppe ;
Ursino, Mauro ;
Montagna, Pasquale .
SLEEP MEDICINE, 2009, 10 (06) :637-640
[8]   VALIDATION OF COMPUTER ANALYZED POLYGRAPHIC PATTERNS DURING DROWSINESS AND SLEEP ONSET [J].
HASAN, J ;
HIRVONEN, K ;
VARRI, A ;
HAKKINEN, V ;
LOULA, P .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1993, 87 (03) :117-127
[9]   The detection of drowsiness and sleep onset periods from ambulatory recorded polygraphic data [J].
Hirvonen, K ;
Hasan, J ;
Hakkinen, V ;
Varri, A ;
Loula, P .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1997, 102 (02) :132-137
[10]   Using EEG spectral components to assess algorithms for detecting fatigue [J].
Jap, Budi Thomas ;
Lal, Sara ;
Fischer, Peter ;
Bekiaris, Evangelos .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) :2352-2359