Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI

被引:240
作者
Parimalam, Bharathy S. [1 ]
Lucht, Brett L. [1 ]
机构
[1] Univ Rhode Isl, Dept Chem, Kingston, RI 02881 USA
关键词
RAY PHOTOELECTRON-SPECTROSCOPY; SOLID-ELECTROLYTE; INFRARED-SPECTROSCOPY; DEGRADATION-PRODUCTS; GRAPHITE ANODES; LI; INTERFACE; INTERPHASE; CELLS; IDENTIFICATION;
D O I
10.1149/2.0901802jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The reduction products of common lithium salts for lithium ion battery electrolytes, LiPF6, LiBF4, lithium bisoxalato borate (LiBOB), lithium difluorooxalato borate (LiDFOB), and lithium trifluorosulfonylimide (LiTFSI), have been investigated. The solution phase reduction of different lithium salts via reaction with the one electron reducing agent, lithium naphthalenide, results in near quantitative reactions. Analysis of the solution phase and head space gasses suggests that all of the reduction products are precipitated as insoluble solids. The solids obtained through reduction were analyzed with solution NMR, IR-ATR and XPS. All fluorine containing salts generate LiF upon reduction while all oxalate containing salts generate lithium oxalate. In addition, depending upon the salt other species including, LixPFyOz, LixBFy, oligomeric borates, and lithium bis[N-(trifluoromethylsulfonylimino)] trifluoromethanesulfonate are observed. (C) The Author(s) 2018. Published by ECS.
引用
收藏
页码:A251 / A255
页数:5
相关论文
共 31 条
[1]   The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes [J].
Andersson, AM ;
Herstedt, M ;
Bishop, AG ;
Edström, K .
ELECTROCHIMICA ACTA, 2002, 47 (12) :1885-1898
[2]   A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J].
Aurbach, D ;
Markovsky, B ;
Shechter, A ;
EinEli, Y ;
Cohen, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3809-3820
[3]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[4]   X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy [J].
Aurbach, D ;
Weissman, I ;
Schechter, A ;
Cohen, H .
LANGMUIR, 1996, 12 (16) :3991-4007
[5]   Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries [J].
Campion, CL ;
Li, WT ;
Lucht, BL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :A2327-A2334
[6]   Chemical redox agents for organometallic chemistry [J].
Connelly, NG ;
Geiger, WE .
CHEMICAL REVIEWS, 1996, 96 (02) :877-910
[7]   A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells [J].
Ein-Eli, Y .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (05) :212-214
[8]   Synthesis of new organic super acids -: N-(trifluoromethylsulfonyl)-imino derivatives of trifluoromethanesulfonic acid and bis(trifluoromethylsulfonyl)imide [J].
Garlyauskayte, RY ;
Chernega, AN ;
Michot, C ;
Armand, M ;
Yagupolskii, YL ;
Yagupolskii, LM .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2005, 3 (12) :2239-2243
[9]   Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights [J].
Gauthier, Magali ;
Carney, Thomas J. ;
Grimaud, Alexis ;
Giordano, Livia ;
Pour, Nir ;
Chang, Hao-Hsun ;
Fenning, David P. ;
Lux, Simon F. ;
Paschos, Odysseas ;
Bauer, Christoph ;
Magia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22) :4653-4672
[10]   Identification of Li battery electrolyte degradation products through direct synthesis and characterization of alkyl carbonate salts [J].
Gireaud, L ;
Grugeon, S ;
Laruelle, S ;
Pilard, S ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A850-A857