Sulfur impregnation in polypyrrole-modified MnO2 nanotubes: efficient polysulfide adsorption for improved lithium-sulfur battery performance

被引:31
作者
Du, Pengcheng [1 ,2 ]
Wei, Wenli [1 ,2 ,3 ]
Dong, Yuman [1 ,2 ]
Liu, Dong [1 ,2 ]
Wang, Qi [1 ,2 ]
Peng, Yi [3 ]
Chen, Shaowei [3 ]
Liu, Peng [1 ,2 ]
机构
[1] Lanzhou Univ, Coll Chem & Chem Engn, State Key Lab Appl Organ Chem, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Coll Chem & Chem Engn, Inst Polymer Sci & Engn, Lanzhou 730000, Gansu, Peoples R China
[3] Univ Calif Santa Cruz, Dept Chem & Biochem, 1156 High St, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
CATHODE MATERIALS; COMPOSITE CATHODES; CARBON; NANOSHEETS; HOSTS; MEMBRANE; MEDIATOR; SPHERES;
D O I
10.1039/c8nr10353d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable lithium-sulfur batteries have emerged as a viable technology for next generation electrochemical energy storage, and the sulfur cathode plays a critical role in determining the device performance. In this study, we prepared functional composites based on polypyrrole-coated MnO2 nanotubes as a highly efficient sulfur host (sulfur mass loading 63.5%). The hollow interior of the MnO2 nanotubes not only allowed for accommodation of volumetric changes of sulfur particles during the cycling process, but also confined the diffusion of lithium polysulfides by physical restriction and chemical adsorption, which minimized the loss of polysulfide species. In addition, the polypyrrole outer layer effectively enhanced the electrical conductivity of the cathode to facilitate ion and electron transport. The as-prepared MnO2-PPy-S composite delivered an initial specific capacity of 1469 mA h g(-1) and maintained an extremely stable cycling performance, with a small capacity decay of merely 0.07% per cycle at 0.2C within 500 cycles, a high average coulombic efficiency of 95.7% and an excellent rate capability at 470 mA h g(-1) at the current density of 3C.
引用
收藏
页码:10097 / 10105
页数:9
相关论文
共 57 条
[1]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[2]   Encapsulation of cathode in lithium-sulfur batteries with a novel two-dimensional carbon allotrope: DHP-graphene [J].
Cai, Yingxiang ;
Guo, Yuqing ;
Jiang, Bo ;
Lv, Yanan .
SCIENTIFIC REPORTS, 2017, 7
[3]   Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries [J].
Chen, Renjie ;
Zhao, Teng ;
Lu, Jun ;
Wu, Feng ;
Li, Li ;
Chen, Junzheng ;
Tan, Guoqiang ;
Ye, Yusheng ;
Amine, Khalil .
NANO LETTERS, 2013, 13 (10) :4642-4649
[4]   Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries [J].
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Zhang, Qiang ;
Peng, Hong-Jie ;
Zhao, Meng-Qiang ;
Wei, Fei .
NANO ENERGY, 2014, 4 :65-72
[5]   Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li-S Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2014, 26 (09) :1360-1365
[6]   Uniform α-Ni(OH)2 hollow spheres constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term lithium-sulfur batteries [J].
Dai, Chunlong ;
Hu, Linyu ;
Wang, Min-Qiang ;
Chen, Yuming ;
Han, Jin ;
Jiang, Jian ;
Zhang, Yan ;
Shen, Bolei ;
Niu, Yubin ;
Bao, Shu-Juan ;
Xu, Maowen .
ENERGY STORAGE MATERIALS, 2017, 8 :202-208
[7]   Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries [J].
Ding, Bing ;
Yuan, Changzhou ;
Shen, Laifa ;
Xu, Guiyin ;
Nie, Ping ;
Lai, Qingxue ;
Zhang, Xiaogang .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (04) :1096-1101
[8]   More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Sun, Zhenhua ;
Wang, Wei ;
Cheng, Hui-Ming ;
Li, Feng .
ADVANCED MATERIALS, 2017, 29 (48)
[9]   Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium-Sulfur Batteries [J].
Guo, Juchen ;
Xu, Yunhua ;
Wang, Chunsheng .
NANO LETTERS, 2011, 11 (10) :4288-4294
[10]   Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium-Sulfur Batteries [J].
Huang, Jia-Qi ;
Zhuang, Ting-Zhou ;
Zhang, Qiang ;
Peng, Hong-Jie ;
Chen, Cheng-Meng ;
Wei, Fei .
ACS NANO, 2015, 9 (03) :3002-3011