Extraction of phase and group velocities from ambient surface noise in a patch-array configuration

被引:16
作者
Chmiel, Malgorzata [1 ,2 ]
Roux, Philippe [1 ]
Bardainne, Thomas [2 ]
机构
[1] Univ Grenoble Alpes, Inst Sci Terre, CNRS UMR 5275, Maison Geosci, St Martin Dheres, France
[2] CGG, Massy, France
关键词
WAVE TOMOGRAPHY; CROSS-CORRELATION; SEISMIC NOISE; FIELD; INVERSION; MANTLE;
D O I
10.1190/GEO2016-0027.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We have investigated the use of ambient-noise data to extract phase and group velocities from surface-noise sources in a microseismic monitoring context. The data were continuously recorded on 44 patch arrays with an interpatch distance on the order of 1 km. Typically, a patch-array design consists of a few tens of patches, each containing 48 strings of 12 single-vertical-component geophones densely distributed within the patch area. The specificity of the patch-array design allows seismic analysis at two different scales. Within each patch, highly coherent signals at small distances provide phase information at high frequency (up to 10 Hz), from which surface-wave phase velocities can be extracted. Between the pairs of patches, surface-wave group-velocity maps can be built using correctly identified and localized surface-noise sources. The technique can be generalized to every patch pair using different noise sources identified at the surface. We note that the incoherent but localized noise sources accelerate the convergence of the noise-correlation functions. This opens the route to passive seismic monitoring of the near surface from repetitive inversion of phase-and group-velocity maps.
引用
收藏
页码:S231 / S240
页数:10
相关论文
共 38 条
[1]   3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations [J].
Brenguier, Florent ;
Shapiro, Nikolai M. ;
Campillo, Michel ;
Nercessian, Alexandre ;
Ferrazzini, Valerie .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (02)
[2]  
Bussat Sascha, 2011, Leading Edge, V30, P514, DOI 10.1190/1.3589107
[3]  
Campillo M., 2011, Encyclopedia of Earth Sciences Series, P1230, DOI [10.1007/978-90-481-8702-7218, DOI 10.1007/978-90-481-8702-7218]
[4]   HIGH-RESOLUTION FREQUENCY-WAVENUMBER SPECTRUM ANALYSIS [J].
CAPON, J .
PROCEEDINGS OF THE IEEE, 1969, 57 (08) :1408-&
[5]  
Corciulo M, 2012, GEOPHYSICS, V77, pKS33, DOI [10.1190/GEO2011-0438.1, 10.1190/geo2011-0438.1]
[6]   Locating hydrothermal acoustic sources at Old Faithful Geyser using Matched Field Processing [J].
Cros, E. ;
Roux, P. ;
Vandemeulebrouck, J. ;
Kedar, S. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2011, 187 (01) :385-393
[7]  
de Ridder Sjoerd, 2011, Leading Edge, V30, P506, DOI 10.1190/1.3589108
[8]  
Evans D.M., 1966, The Mountain Geologist
[9]   Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application [J].
Fang, Hongjian ;
Yao, Huajian ;
Zhang, Haijiang ;
Huang, Yu-Chih ;
van der Hilst, Robert D. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 201 (03) :1251-1263
[10]   Cross-correlation of random fields:: mathematical approach and applications [J].
Gouedard, P. ;
Stehly, L. ;
Brenguier, F. ;
Campillo, M. ;
de Verdiere, Y. Colin ;
Larose, E. ;
Margerin, L. ;
Roux, P. ;
Sanchez-Sesma, F. J. ;
Shapiro, N. M. ;
Weaver, R. L. .
GEOPHYSICAL PROSPECTING, 2008, 56 (03) :375-393