Infinitely many periodic solutions for a class of new superquadratic second-order Hamiltonian systems

被引:8
作者
Li, Chun [1 ]
Agarwal, Ravi P. [2 ]
Pasca, Daniel [3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[3] Univ Oradea, Dept Math & Informat, Oradea 410087, Romania
基金
中国国家自然科学基金;
关键词
Periodic solutions; Second-order Hamiltonian systems; Fountain Theorem; EXISTENCE; THEOREMS;
D O I
10.1016/j.aml.2016.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of infinitely many periodic solutions for a class of new superquadratic second-order Hamiltonian systems. Our technique is based on the Fountain Theorem due to Bartsch. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 1986, CBMS REG C SER MATH
[2]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[3]   INFINITELY MANY SOLUTIONS OF A SYMMETRICAL DIRICHLET PROBLEM [J].
BARTSCH, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (10) :1205-1216
[4]   Multiple periodic solutions for Hamiltonian systems with not coercive potential [J].
Bonanno, Gabriele ;
Livrea, Roberto .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) :627-638
[5]  
Cerami G., 1978, I LOMBARDO ACCAD S A, V112, p332?336
[6]   Infinitely many periodic solutions for a second-order nonautonomous system [J].
Faraci, F ;
Livrea, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (03) :417-429
[7]  
Fei G., 2002, ELECT J DIFFERENTIAL, V08, P1
[8]  
Felmer P., 1998, TOPOL METHOD NONL AN, V12, P207, DOI [10.12775/TMNA.1998.038, DOI 10.12775/TMNA.1998.038]
[9]   On superquadratic periodic systems with indefinite linear part [J].
Kyritsi, Sophia Th. ;
Papageorgiou, Nikolaos S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :946-954
[10]   Existence solutions for second order Hamiltonian systems [J].
Li, Lin ;
Schechter, Martin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 27 :283-296