A grain level model for deformation and failure of ultrafine-grained tungsten

被引:3
作者
Ren Ke [1 ]
Chen LiRong [1 ,2 ,3 ]
Cheng YangYang [1 ]
Wang JianXiang [1 ]
Duan HuiLing [1 ,2 ,3 ]
机构
[1] Peking Univ, Coll Engn, Dept Mech & Engn Sci, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[2] Peking Univ, BIC ESAT, Ctr Appl Phys & Technol, Key Lab High Energy Dens Phys Simulat, Beijing 100871, Peoples R China
[3] Peking Univ, IFSA, Collaborat Innovat Ctr MoE, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
ultrafine grain (UFG); tungsten; crystal plasticity; interface failure; MECHANICAL-PROPERTIES; CONSTITUTIVE LAW; STRAIN-RATE; NANOCRYSTALLINE; TEMPERATURE; DUCTILITY; METALS; MICROSTRUCTURE; CRYSTALS; STRENGTH;
D O I
10.1007/s11431-018-9439-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultrafine-grained tungsten (UFG W) produced by severe plastic deformation technology has many potential applications due to its high strength and ductility. To reveal the mechanism for the high ductility of UFG W, the deformation and failure behaviors of coarse-grained tungsten (CG W) and UFG W have been compared based on a three-dimensional crystal plastic finite element method (CPFEM) simulation. Cohesive element method has been utilized to model the behavior of grain boundaries (GBs). Both plastic deformation in grain interiors and grain boundary opening have been observed in different periods of deformation in UFG W. It is concluded that the high GB density and elongated microstructure in the UFG W suppress crack propagation, decrease the stress concentration and impurity concentration on GBs, therefore enhance the ductility of the material.
引用
收藏
页码:755 / 761
页数:7
相关论文
共 38 条
[1]   MICROMECHANICS OF CRYSTALS AND POLYCRYSTALS [J].
ASARO, RJ .
ADVANCES IN APPLIED MECHANICS, 1983, 23 :1-115
[2]   Analytical homogenization modeling and computational simulation of intergranular fracture in polycrystals [J].
Benabou, L. ;
Sun, Z. .
INTERNATIONAL JOURNAL OF FRACTURE, 2015, 193 (01) :59-75
[3]   A dislocation-based constitutive law for pure Zr including temperature effects [J].
Beyerlein, I. J. ;
Tome, C. N. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (05) :867-895
[4]   Influence of point defects on grain boundary mobility in bcc tungsten [J].
Borovikov, Valery ;
Tang, Xian-Zhu ;
Perez, Danny ;
Bai, Xian-Ming ;
Uberuaga, Blas P. ;
Voter, Arthur F. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (03)
[5]   Texture evolution and mechanical behaviour of irradiated face-centred cubic metals [J].
Chen, L. R. ;
Xiao, X. Z. ;
Yu, L. ;
Chu, H. J. ;
Duan, H. L. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210)
[6]   A comparative study on the in situ helium irradiation behavior of tungsten: Coarse grain vs. nanocrystalline grain [J].
Chen, Zhe ;
Niu, Liang-Liang ;
Wang, Zhanlei ;
Tian, Lifeng ;
Kecskes, Laszlo ;
Zhu, Kaigui ;
Wei, Qiuming .
ACTA MATERIALIA, 2018, 147 :100-112
[7]   Effect of strain rate on plastic flow and failure in polycrystalline tungsten [J].
Dummer, T ;
Lasalvia, JC ;
Ravichandran, G ;
Meyers, MA .
ACTA MATERIALIA, 1998, 46 (17) :6267-6290
[8]   Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten [J].
El-Atwani, O. ;
Hinks, J. A. ;
Greaves, G. ;
Allain, J. P. ;
Maloy, S. A. .
MATERIALS RESEARCH LETTERS, 2017, 5 (05) :343-349
[9]   In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments [J].
El-Atwani, O. ;
Hinks, J. A. ;
Greaves, G. ;
Gonderman, S. ;
Qiu, T. ;
Efe, M. ;
Allain, J. P. .
SCIENTIFIC REPORTS, 2014, 4
[10]   A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation [J].
Espinosa, HD ;
Zavattieri, PD .
MECHANICS OF MATERIALS, 2003, 35 (3-6) :333-364