Inhibition by various antipsychotic drugs of the G-protein-activated inwardly rectifying K+ (GIRK) channels expressed in Xenopus oocytes

被引:49
作者
Kobayashi, T
Ikeda, K
Kumanishi, T
机构
[1] Niigata Univ, Inst Brain Res, Dept Mol Neuropathol, Niigata 9518585, Japan
[2] Niigata Univ, Sch Med, Dept Psychiat, Niigata 9518510, Japan
[3] RIKEN, Brain Sci Inst, Lab Neurobiol Emot, Wako, Saitama 3510198, Japan
关键词
antipsychotic drug; haloperidol; thioridazine; pimozide; clozapine; G-protein-activated inwardly rectifying K+ (GIRK) channel; Xenopus oocyte;
D O I
10.1038/sj.bjp.0703224
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
1 To investigate the effects of various chemical classes of antipsychotic drugs: haloperidol, thioridazine, pimozide and clozapine, on the G-protein-activated inwardly rectifying K+ (GIRK) channels, we carried out Xenopus oocyte functional assays with GIRK1 and GIRK2 mRNAs or GIRK1 and GIRK4 mRNas. 2 In oocytes co-injected with GIRK1 and GIRK2 mRNas, application of each of the various antipsychotic drugs immediately caused a reduction of inward currents through the basally active GIRK channels. These responses were not observed in the presence of 3 mM Ba2+, which blocks the GIRK channels. In addition, in uninjected oocytes, none of the drugs tested produced any significant current response. These results indicate that all the antipsychotic drugs tested inhibited the brain-type GIRK1/2 heteromultimeric channels. Furthermore, similar results were obtained in oocytes co-injected with GIRK1 and GIRK4 mRNAs, indicating that the antipsychotic drugs also inhibited the cardiac-type GIRK1/4 heteromultimeric channels. 3 All the drugs tested inhibited, in a concentration-dependent manner, both types of GIRK channels with varying degrees of potency and effectiveness at micromolar concentrations. Only pimozide caused slight inhibition of these channels at nanomolar concentrations, 4 We conclude that the various antipsychotic drugs acted as inhibitors at the brain-type and cardiac-type GIRK channels. Our results suggest that inhibition of both types of GIRK channels by these drugs underlies some of the side effects, in particular seizures and sinus tachycardia, observed in clinical practice.
引用
收藏
页码:1716 / 1722
页数:7
相关论文
共 43 条
[1]  
AYD FJ, 1978, J CLIN PSYCHIAT, V39, P807
[2]  
Baldessarini R., 1996, GOODMAN GILMANS PHAR, P399
[3]   TISSUE CONCENTRATIONS OF CLOZAPINE AND ITS METABOLITES IN THE RAT [J].
BALDESSARINI, RJ ;
CENTORRINO, F ;
FLOOD, JG ;
VOLPICELLI, SA ;
HUSTONLYONS, D ;
COHEN, BM .
NEUROPSYCHOPHARMACOLOGY, 1993, 9 (02) :117-124
[4]   IONIC CHANNELS AND THEIR REGULATION BY G-PROTEIN SUBUNITS [J].
BROWN, AM ;
BIRNBAUMER, L .
ANNUAL REVIEW OF PHYSIOLOGY, 1990, 52 :197-213
[5]   CARDIOTOXICITY MORE COMMON IN THIORIDAZINE OVERDOSE THAN WITH OTHER NEUROLEPTICS [J].
BUCKLEY, NA ;
WHYTE, IM ;
DAWSON, AH .
JOURNAL OF TOXICOLOGY-CLINICAL TOXICOLOGY, 1995, 33 (03) :199-204
[6]   THE INWARD RECTIFIER POTASSIUM CHANNEL FAMILY [J].
DOUPNIK, CA ;
DAVIDSON, N ;
LESTER, HA .
CURRENT OPINION IN NEUROBIOLOGY, 1995, 5 (03) :268-277
[7]   HETEROLOGOUS MULTIMERIC ASSEMBLY IS ESSENTIAL FOR K+ CHANNEL ACTIVITY OF NEURONAL AND CARDIAC G-PROTEIN-ACTIVATED INWARD RECTIFIERS [J].
DUPRAT, F ;
LESAGE, F ;
GUILLEMARE, E ;
FINK, M ;
HUGNOT, JP ;
BIGAY, J ;
LAZDUNSKI, M ;
ROMEY, G ;
BARHANIN, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 212 (02) :657-663
[8]  
FULOP G, 1987, AM J PSYCHIAT, V144, P673
[9]   LONG-TERM EXPERIENCE WITH CLOZAPINE IN DENMARK - RESEARCH AND CLINICAL-PRACTICE [J].
GERLACH, J ;
JORGENSEN, EO ;
PEACOCK, L .
PSYCHOPHARMACOLOGY, 1989, 99 :S92-S96
[10]   ANTISCHIZOPHRENIC DRUGS OF THE DIPHENYLBUTYLPIPERIDINE TYPE ACT AS CALCIUM-CHANNEL ANTAGONISTS [J].
GOULD, RJ ;
MURPHY, KMM ;
REYNOLDS, IJ ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (16) :5122-5125