A sharp decay estimate for positive nonlinear waves

被引:14
作者
Bressan, A
Yang, T
机构
[1] SISSA, I-34014 Trieste, Italy
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
hyperbolic conservation laws; positive nonlinear waves; Burgers's equation;
D O I
10.1137/S0036141003427774
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a strictly hyperbolic, genuinely nonlinear system of conservation laws in one space dimension. A sharp decay estimate is proved for the positive waves in an entropy weak solution. The result is stated in terms of a partial ordering among positive measures, using symmetric rearrangements and a comparison with a solution of Burgers's equation with impulsive sources.
引用
收藏
页码:659 / 677
页数:19
相关论文
共 11 条
[1]  
[Anonymous], MEM AM MATH SOC
[2]  
BAITI P, 1997, GEOMETRICAL OPTICS R, P31
[3]   Oleinik type estimates and uniqueness for n x n conservation laws [J].
Bressan, A ;
Goatin, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (01) :26-49
[4]  
BRESSAN A, UNPUB COMM PURE APPL
[5]  
Bressan A., 2000, Oxford Lect. Ser. Math. Appl.
[6]  
Bressan Alberto., 1998, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V26, P133
[7]  
GLIMM J, 1970, MEM AM MATH SOC, P1
[8]   LINEAR AND NONLINEAR LARGE-TIME BEHAVIOR OF SOLUTIONS OF GENERAL SYSTEMS OF HYPERBOLIC CONSERVATION LAWS [J].
LIU, TP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (06) :767-796
[9]  
LIU TP, 1977, COMMUN PUR APPL MATH, V30, P586
[10]  
Oleinik O.A., 1963, Amer. Math. Soc. Transl, V2, P95