Adjusted QMLE for the spatial autoregressive parameter

被引:5
作者
Martellosio, Federico [1 ]
Hillier, Grant [2 ,3 ]
机构
[1] Univ Surrey, Guildford, Surrey, England
[2] CeMMAP, London, England
[3] Univ Southampton, Southampton, Hants, England
关键词
Adjusted maximum likelihood estimation; Fixed effects; Group interaction; Networks; Spatial autoregression; MAXIMUM LIKELIHOOD ESTIMATORS; SOCIAL-INTERACTION MODELS; SADDLEPOINT APPROXIMATIONS; PROFILE LIKELIHOODS; INFERENCE; IDENTIFICATION; AUTOCORRELATION; GMM;
D O I
10.1016/j.jeconom.2020.03.013
中图分类号
F [经济];
学科分类号
02 ;
摘要
One simple, and often very effective, way to attenuate the impact of nuisance parameters on maximum likelihood estimation of a parameter of interest is to recenter the profile score for that parameter. We apply this general principle to the quasi-maximum like-lihood estimator (QMLE) of the autoregressive parameter A. in a spatial autoregression. The resulting estimator for A. has better finite sample properties compared to the QMLE for A., especially in the presence of a large number of covariates. It can also solve the incidental parameter problem that arises, for example, in social interaction models with network fixed effects. However, spatial autoregressions present specific challenges for this type of adjustment, because recentering the profile score may cause the adjusted estimate to be outside the usual parameter space for A.. Conditions for this to happen are given, and implications are discussed. For inference, we propose confidence intervals based on a Lugannani-Rice approximation to the distribution of the adjusted QMLE of A.. Based on our simulations, the coverage properties of these intervals are excellent even in models with a large number of covariates. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:488 / 506
页数:19
相关论文
共 50 条
  • [41] Parameter estimation of neuro-fuzzy based Hammerstein controlled autoregressive autoregressive moving average systems
    Lyu, Bensheng
    Jia, Li
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1829 - 1834
  • [42] A CONDITIONAL-HETEROSKEDASTICITY-ROBUST CONFIDENCE INTERVAL FOR THE AUTOREGRESSIVE PARAMETER
    Andrews, Donald W. K.
    Guggenberger, Patrik
    REVIEW OF ECONOMICS AND STATISTICS, 2014, 96 (02) : 376 - 381
  • [43] Oracally efficient estimation and specification testing of partially linear additive spatial autoregressive models
    Chen, Shiyuan
    Song, Xiaojun
    Yu, Jihai
    ECONOMETRIC REVIEWS, 2025,
  • [44] Directional spatial autoregressive dependence in the conditional first- and second-order moments
    Merk, Miryam S.
    Otto, Philipp
    SPATIAL STATISTICS, 2021, 41
  • [45] Spatial hedonic modelling adjusted for preferential sampling
    Paci, Lucia
    Gelfand, Alan E.
    Asuncion Beamonte, Maria
    Gargallo, Pilar
    Salvador, Manuel
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2019, : 169 - 192
  • [46] Test for parameter changes in generalized random coefficient autoregressive model
    Zhao, Zhi-Wen
    Wang, De-Hui
    Peng, Cui-Xin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [47] Higher-order spatial autoregressive varying coefficient model: estimation and specification test
    Li, Tizheng
    Wang, Yuping
    TEST, 2024, 33 (04) : 1258 - 1299
  • [48] Estimation of semiparametric varying-coefficient spatial autoregressive models with missing in the dependent variable
    Luo, Guowang
    Wu, Mixia
    Pang, Zhen
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2020, 49 (04) : 1148 - 1172
  • [49] On some parameter estimation algorithms for the nonlinear exponential autoregressive model
    Xu, Huan
    Ding, Feng
    Sheng, Jie
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (06) : 999 - 1015
  • [50] Model Checking in Partially Linear Spatial Autoregressive Models
    Yang, Zixin
    Song, Xiaojun
    Yu, Jihai
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (04) : 1210 - 1222