COMPRESSIVE SPECTRAL ESTIMATION FOR NONSTATIONARY RANDOM PROCESSES

被引:4
作者
Jung, Alexander [1 ]
Tauboeck, Georg [1 ]
Hlawatsch, Franz [1 ]
机构
[1] Vienna Univ Technol, Inst Commun & Radio Frequency Engn, A-1040 Vienna, Austria
来源
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS | 2009年
关键词
Nonstationary spectral estimation; Wigner-Ville spectrum; Gabor expansion; compressed sensing; sparse reconstruction; basis pursuit;
D O I
10.1109/ICASSP.2009.4960262
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a "compressive" estimator of the Wigner-Ville spectrum (WVS) for time-frequency sparse, underspread, nonstationary random processes. A novel WVS estimator involving the signal's Gabor coefficients on an undersampled time-frequency grid is combined with a compressed sensing transformation in order to reduce the number of measurements required. The performance of the compressive WVS estimator is analyzed via a bound on the mean square error and through simulations. We also propose an efficient implementation using a special construction of the measurement matrix.
引用
收藏
页码:3029 / 3032
页数:4
相关论文
共 13 条
[1]   Time-frequency localization from sparsity constraints [J].
Borgnat, Pierre ;
Flandrin, Patrick .
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, :3785-3788
[2]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[3]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[4]  
Flandrin P., 1997, The Wigner Distribution, P211
[5]  
Grochenig K., 2001, Foundations of Time-Frequency Analysis. Applied andNumerical Harmonic Analysis, DOI DOI 10.1007/978-1-4612-0003-1
[6]   2ND-ORDER TIME-FREQUENCY SYNTHESIS OF NONSTATIONARY RANDOM-PROCESSES [J].
HLAWATSCH, F ;
KOZEK, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (01) :255-267
[7]  
Kozek W., 1994, Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.94TH8007), P460, DOI 10.1109/TFSA.1994.467314
[8]  
Kozek W, 1997, Ph.D. dissertation
[9]  
Mallat S, 1998, ANN STAT, V26, P1
[10]   Nonstationary spectral analysis based on time-frequency operator symbols and underspread approximations [J].
Matz, G ;
Hlawatsch, F .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (03) :1067-1086