Convolutional Neural Network Approach for Multiple Sclerosis Lesion Segmentation

被引:0
作者
Messaoud, Nada Haj [1 ,3 ]
Mansour, Asma [1 ]
Ayari, Rim [1 ]
Ben Abdallah, Asma [1 ]
Aissi, Mouna [2 ]
Frih, Mahbouba [2 ]
Bedoui, Mohamed Hedi [1 ]
机构
[1] Univ Monastir, Lab Technol & Med Imaging, Fac Med, Monastir, Tunisia
[2] Fatouma Bouguiba Hosp, Dept Neurol, Monastir, Tunisia
[3] Univ Monastir, Fac Sci Monastir FSM, Monastir, Tunisia
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2022 | 2022年 / 13756卷
关键词
Deep Learning; Multiple sclerosis segmentation; MRI; Data augmentation;
D O I
10.1007/978-3-031-21753-1_52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays Deep Learning (DL) based automatic segmentation has outperformed traditionalmethods. In the present paper, we are interested in automatic MS lesion segmentation of 2D images based on DL techniques. The main challenge consists in proposing a new model that takes advantage of referenced CNN models: U-Net, ResNet, and DenseNet with a reduced number of parameters and a shorter execution time. To evaluate the proposed approach named "Concat-U-Net", we compared its performance to those of three implemented models, namely U-Net, U-ResNet, and Dense-U-Net. Furthermore, we employed just one modality (FLAIR) from the public ISBI dataset to segment MS lesions accurately. The best Dice value obtained was 0.73, which outperformed those reported in the literature. Our approach reduced the elapsed execution time from 48 s to 7 s. By reducing the number of parameters, an 85.42% time gain was achieved.
引用
收藏
页码:540 / 548
页数:9
相关论文
共 17 条
[1]   Automatic and Robust Segmentation of Multiple Sclerosis Lesions with Convolutional Neural Networks [J].
Afzal, H. M. Rehan ;
Luo, Suhuai ;
Ramadan, Saadallah ;
Lechner-Scott, Jeannette ;
Amin, Mohammad Ruhul ;
Li, Jiaming ;
Afzal, M. Kamran .
CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01) :977-991
[2]   Multi-branch convolutional neural network for multiple sclerosis lesion segmentation [J].
Aslani, Shahab ;
Dayan, Michael ;
Storelli, Loredana ;
Filippi, Massimo ;
Murino, Vittorio ;
Rocca, Maria A. ;
Sona, Diego .
NEUROIMAGE, 2019, 196 :1-15
[3]   Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation [J].
Brosch, Tom ;
Tang, Lisa Y. W. ;
Yoo, Youngjin ;
Li, David K. B. ;
Traboulsee, Anthony ;
Tam, Roger .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1229-1239
[4]   Longitudinal multiple sclerosis lesion segmentation: Resource and challenge [J].
Carass, Aaron ;
Roy, Snehashis ;
Jog, Amod ;
Cuzzocreo, Jennifer L. ;
Magrath, Elizabeth ;
Gherman, Adrian ;
Button, Julia ;
Nguyen, James ;
Prados, Ferran ;
Sudre, Carole H. ;
Cardoso, Manuel Jorge ;
Cawley, Niamh ;
Ciccarelli, Olga ;
Wheeler-Kingshott, Claudia A. M. ;
Ourselin, Sebastien ;
Catanese, Laurence ;
Deshpande, Hrishikesh ;
Maurel, Pierre ;
Commowick, Olivier ;
Barillot, Christian ;
Tomas-Fernandez, Xavier ;
Warfield, Simon K. ;
Vaidya, Suthirth ;
Chunduru, Abhijith ;
Muthuganapathy, Ramanathan ;
Krishnamurthi, Ganapathy ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handeles, Heinz ;
Iheme, Leonardo O. ;
Unay, Devrim ;
Jain, Saurabh ;
Sima, Diana M. ;
Smeets, Dirk ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Bazin, Pierre-Louis ;
Calabresi, Peter A. ;
Crainiceanu, Ciprian M. ;
Ellingsen, Lotta M. ;
Reich, Daniel S. ;
Prince, Jerry L. ;
Pham, Dzung L. .
NEUROIMAGE, 2017, 148 :77-102
[5]   Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation [J].
Hagiwara, A. ;
Otsuka, Y. ;
Hori, M. ;
Tachibana, Y. ;
Yokoyama, K. ;
Fujita, S. ;
Andica, C. ;
Kamagata, K. ;
Irie, R. ;
Koshino, S. ;
Maekawa, T. ;
Chougar, L. ;
Wada, A. ;
Takemura, M. Y. ;
Hattori, N. ;
Aoki, S. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (02) :224-230
[6]   Asymmetric Loss Functions and Deep Densely-Connected Networks for Highly-Imbalanced Medical Image Segmentation: Application to Multiple Sclerosis Lesion Detection [J].
Hashemi, Seyed Raein ;
Salehi, Seyed Sadegh Mohseni ;
Erdogmus, Deniz ;
Prabhu, Sanjay P. ;
Warfield, Simon K. ;
Gholipour, Ali .
IEEE ACCESS, 2019, 7 :1721-1735
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[9]  
Maier O., 2015, PROCEEDINGS, P1
[10]   Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks [J].
McKinley, Richard ;
Wepfer, Rik ;
Aschwanden, Fabian ;
Grunder, Lorenz ;
Muri, Raphaela ;
Rummel, Christian ;
Verma, Rajeev ;
Weisstanner, Christian ;
Reyes, Mauricio ;
Salmen, Anke ;
Chan, Andrew ;
Wagner, Franca ;
Wiest, Roland .
SCIENTIFIC REPORTS, 2021, 11 (01)