Local uniqueness for Nash solutions of multiparameter singularly perturbed systems

被引:8
作者
Mukaidani, Hiroaki [1 ]
机构
[1] Hiroshima Univ, Grad Sch Educ, Hiroshima 7398530, Japan
关键词
cross-coupled algebraic Riccati equation (CARE); general multiparameter singularly perturbed systems (GMSPS); local uniqueness; Nash games; parameter-independent Nash strategy;
D O I
10.1109/TCSII.2006.882211
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this brief, linear quadratic infinite-horizon Nash games for general multiparameter singularly perturbed systems are studied. The local uniqueness and the asymptotic structure of the solutions to the cross-coupled multiparameter algebraic Riccati equation (CMARE) are newly established. Utilizing the asymptotic structure of the solutions to the CMARE, the parameter-independent Nash strategy is established. A numerical example is given to demonstrate the efficiency and feasibility of the proposed analysis.
引用
收藏
页码:1103 / 1107
页数:5
相关论文
共 12 条
[1]  
Abou-Kandil H., 2003, MATRIX RICATI EQUATI
[2]  
Gajic Z., 1995, Lyapunov Matrix Equation in System Stability and Control
[3]  
Jang JW, 2003, P AMER CONTR CONF, P5363
[4]   MULTIMODEL DESIGN OF A NASH STRATEGY [J].
KHALIL, HK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1980, 31 (04) :553-564
[5]   CONTROL OF LINEAR-SYSTEMS WITH MULTI-PARAMETER SINGULAR PERTURBATIONS [J].
KHALIL, HK ;
KOKOTOVIC, PV .
AUTOMATICA, 1979, 15 (02) :197-207
[6]  
Koskie S, 2002, DYNAM CONT DIS SER B, V9, P317
[7]   SOLUTION OF OPTIMAL LINEAR CONTROL PROBLEMS UNDER CONFLICT OF INTEREST [J].
KRIKELIS, NJ ;
REKASIUS, ZV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (02) :140-&
[8]  
LI TY, 1994, NEW TRENDS DYNAMIC G, P333
[9]  
Mukaidani H, 2004, DYNAM CONT DIS SER B, V11, P673
[10]   A new design approach for solving linear quadratic nash games of multiparameter singularly perturbed systems [J].
Mukaidani, H .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (05) :960-974