Continuity of the maximum-entropy inference: Convex geometry and numerical ranges approach

被引:14
作者
Rodman, Leiba [1 ]
Spitkovsky, Ilya M. [1 ,2 ]
Szkola, Arleta [3 ]
Weis, Stephan [3 ]
机构
[1] Coll William & Mary, Dept Math, POB 8795, Williamsburg, VA 23187 USA
[2] New York Univ Abu Dhabi, Div Sci & Math, POB 129188, Abu Dhabi, U Arab Emirates
[3] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
关键词
INFORMATION-THEORY; MATRICES; BOUNDARY;
D O I
10.1063/1.4926965
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the continuity of an abstract generalization of the maximum-entropy inference-a maximizer. It is defined as a right-inverse of a linear map restricted to a convex body which uniquely maximizes on each fiber of the linear map a continuous function on the convex body. Using convex geometry we prove, amongst others, the existence of discontinuities of the maximizer at limits of extremal points not being extremal points themselves and apply the result to quantum correlations. Further, we use numerical range methods in the case of quantum inference which refers to two observables. One result is a complete characterization of points of discontinuity for 3 x 3 matrices. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:17
相关论文
共 55 条
[1]  
Alfsen Erik M., 2001, MATH THEORY, V1, DOI 10.1007/978-1-4612-0147-2
[2]  
[Anonymous], AIP C P
[3]  
[Anonymous], LINEAR ALGEBRA ITS A
[4]  
[Anonymous], 1978, WILEY SERIES PROBABI
[5]  
[Anonymous], ARXIV14065046V2QUANT
[6]  
[Anonymous], GOTT NACH
[7]  
[Anonymous], ARXIV14024245QUANTPH
[8]  
AU-YEUNG Y.-H., 1979, Southeast Asian Bull. Math., V3, P85
[9]  
Bengtsson I., 2017, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010
[10]  
Bengtsson I., 2013, GEOMETRIC METHODS PH, P175