Intersection of maximal subgroups which are not minimal nonabelian of finite p-groups

被引:1
作者
Zhang, Lihua [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Dept Math, Beijing 100876, Peoples R China
关键词
Finite p-groups; maximal subgroups; minimal nonabelian subgroups; NON-ABELIAN SUBGROUP; GREATER-THAN; 2;
D O I
10.1080/00927872.2016.1236120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group and φNA1M(G) denote the intersection of maximal subgroups of G which are not minimal nonabelian. We investigate the influence of φNA1M(G) on the structure of finite p-groups. In particular, a question proposed by Berkovich and Janko is solved. © 2017 Taylor & Francis.
引用
收藏
页码:3221 / 3230
页数:10
相关论文
共 20 条
[1]   Finite p-groups with a minimal non-abelian subgroup of index p (IV) [J].
An, Lijian ;
Hu, Ruifang ;
Zhang, Qinhai .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (02)
[2]   Finite p-groups with a minimal non-abelian subgroup of index p (II) [J].
An LiJian ;
Li Lili ;
Qu HaiPeng ;
Zhang QinHai .
SCIENCE CHINA-MATHEMATICS, 2014, 57 (04) :737-753
[3]  
Berkovich Y., 2011, GROUPS PRIME POWER O, V3
[4]  
Berkovich Y., 2008, GROUPS PRIME POWER O
[5]  
BERKOVICH Y, 2008, GROUPS PRIME POWER O, V2
[6]  
Berkovich Y, 2006, CONTEMP MATH, V402, P13
[7]  
Bozikov Z, 2010, GLAS MAT, V45, P63
[8]  
Draganyuk S.V., 1990, COMPLEX ANAL ALGEBRA, P42
[9]   FINITE p-GROUPS G WITH p > 2 AND d(G) > 2 HAVING EXACTLY ONE MAXIMAL SUBGROUP WHICH IS NEITHER ABELIAN NOR MINIMAL NONABELIAN [J].
Janko, Zvonimir .
GLASNIK MATEMATICKI, 2011, 46 (01) :103-120
[10]   FINITE p-GROUPS G WITH p > 2 AND d(G)=2 HAVING EXACTLY ONE MAXIMAL SUBGROUP WHICH IS NEITHER ABELIAN NOR MINIMAL NONABELIAN [J].
Janko, Zvonimir .
GLASNIK MATEMATICKI, 2010, 45 (02) :441-452