Transfer learning efficiently maps bone marrow cell types from mouse to human using single-cell RNA sequencing

被引:23
作者
Stumpf, Patrick S. [1 ,2 ]
Du, Xin [3 ]
Imanishi, Haruka [4 ]
Kunisaki, Yuya [5 ]
Semba, Yuichiro [6 ]
Noble, Timothy [1 ]
Smith, Rosanna C. G. [7 ]
Rose-Zerili, Matthew [7 ]
West, Jonathan J. [7 ,8 ]
Oreffo, Richard O. C. [1 ,8 ]
Farrahi, Katayoun [3 ]
Niranjan, Mahesan [3 ]
Akashi, Koichi [6 ]
Arai, Fumio [4 ]
MacArthur, Ben D. [1 ,8 ,9 ,10 ]
机构
[1] Univ Southampton, Fac Med, Ctr Human Dev Stem Cells & Regenerat, Southampton SO17 1BJ, Hants, England
[2] Rhein Westfal TH Aachen, Joint Res Ctr Computat Biomed, D-52074 Aachen, Germany
[3] Univ Southampton, Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[4] Kyushu Univ, Grad Sch Med Sci, Dept Stem Cell Biol & Med, Fukuoka 8128582, Japan
[5] Kyushu Univ Hosp, Ctr Cellular & Mol Med, Fukuoka 8128582, Japan
[6] Kyushu Univ, Dept Med & Biosyst Sci, Grad Sch Med Sci, Fukuoka 8128582, Japan
[7] Univ Southampton, Fac Med, Canc Sci, Southampton SO16 6YD, Hants, England
[8] Univ Southampton, Inst Life Sci, Southampton SO17 1BJ, Hants, England
[9] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
[10] Alan Turing Inst, London NW1 2DB, England
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
HEMATOPOIETIC STEM-CELLS; LINEAGE COMMITMENT; GENE; EXPRESSION; DIFFERENTIATION;
D O I
10.1038/s42003-020-01463-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomedical research often involves conducting experiments on model organisms in the anticipation that the biology learnt will transfer to humans. Previous comparative studies of mouse and human tissues were limited by the use of bulk-cell material. Here we show that transfer learning-the branch of machine learning that concerns passing information from one domain to another-can be used to efficiently map bone marrow biology between species, using data obtained from single-cell RNA sequencing. We first trained a multiclass logistic regression model to recognize different cell types in mouse bone marrow achieving equivalent performance to more complex artificial neural networks. Furthermore, it was able to identify individual human bone marrow cells with 83% overall accuracy. However, some human cell types were not easily identified, indicating important differences in biology. When re-training the mouse classifier using data from human, less than 10 human cells of a given type were needed to accurately learn its representation. In some cases, human cell identities could be inferred directly from the mouse classifier via zero-shot learning. These results show how simple machine learning models can be used to reconstruct complex biology from limited data, with broad implications for biomedical research.
引用
收藏
页数:11
相关论文
共 60 条
[1]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.4105891
[2]   Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises [J].
Armulik, Annika ;
Genove, Guillem ;
Betsholtz, Christer .
DEVELOPMENTAL CELL, 2011, 21 (02) :193-215
[3]   The Evolutionary Landscape of Alternative Splicing in Vertebrate Species [J].
Barbosa-Morais, Nuno L. ;
Irimia, Manuel ;
Pan, Qun ;
Xiong, Hui Y. ;
Gueroussov, Serge ;
Lee, Leo J. ;
Slobodeniuc, Valentina ;
Kutter, Claudia ;
Watt, Stephen ;
Colak, Recep ;
Kim, TaeHyung ;
Misquitta-Ali, Christine M. ;
Wilson, Michael D. ;
Kim, Philip M. ;
Odom, Duncan T. ;
Frey, Brendan J. ;
Blencowe, Benjamin J. .
SCIENCE, 2012, 338 (6114) :1587-1593
[4]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[5]   Mapping the physical network of cellular interactions [J].
Boisset, Jean-Charles ;
Vivie, Judith ;
Gruen, Dominic ;
Muraro, Mauro J. ;
Lyubimova, Anna ;
van Oudenaarden, Alexander .
NATURE METHODS, 2018, 15 (07) :547-+
[6]   The evolution of gene expression levels in mammalian organs [J].
Brawand, David ;
Soumillon, Magali ;
Necsulea, Anamaria ;
Julien, Philippe ;
Csardi, Gabor ;
Harrigan, Patrick ;
Weier, Manuela ;
Liechti, Angelica ;
Aximu-Petri, Ayinuer ;
Kircher, Martin ;
Albert, Frank W. ;
Zeller, Ulrich ;
Khaitovich, Philipp ;
Gruetzner, Frank ;
Bergmann, Sven ;
Nielsen, Rasmus ;
Paeaebo, Svante ;
Kaessmann, Henrik .
NATURE, 2011, 478 (7369) :343-+
[7]  
Brodersen Kay H., 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P3121, DOI 10.1109/ICPR.2010.764
[8]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[9]   MOLECULAR-CLONING AND FUNCTIONAL EXPRESSION OF 2 MONOCYTE CHEMOATTRACTANT PROTEIN-1 RECEPTORS REVEALS ALTERNATIVE SPLICING OF THE CARBOXYL-TERMINAL TAILS [J].
CHARO, IF ;
MYERS, SJ ;
HERMAN, A ;
FRANCI, C ;
CONNOLLY, AJ ;
COUGHLIN, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (07) :2752-2756
[10]   A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models [J].
Christodoulou, Evangelia ;
Ma, Jie ;
Collins, Gary S. ;
Steyerberg, Ewout W. ;
Verbakel, Jan Y. ;
Van Calster, Ben .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 :12-22