Stability, isolated chaos, and superdiffusion in nonequilibrium many-body interacting systems

被引:4
|
作者
Rajak, Atanu [1 ,2 ]
Dana, Itzhack [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-5290002 Ramat Gan, Israel
[2] Presidency Univ, Kolkata 700073, W Bengal, India
基金
以色列科学基金会;
关键词
PERIODICALLY DRIVEN; ACCELERATOR MODES; FRACTIONAL KINETICS; DYNAMICAL-SYSTEMS; SELF-SIMILARITY; PHASE-SPACE; DIFFUSION; TRANSPORT; INSTABILITY;
D O I
10.1103/PhysRevE.102.062120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study stability and chaotic-transport features of paradigmatic nonequilibrium many-body systems, i.e., periodically kicked and interacting particles, for arbitrary number of particles, nonintegrability strength unbounded from above, and different interaction cases. We rigorously show that under the latter general conditions and in strong nonintegrability regimes there exist fully stable orbits, accelerator-mode (AM) fixed points, performing ballistic motion in momentum. These orbits exist despite of the completely and strongly chaotic phase space with generally fast Arnol'd diffusion. It is numerically shown that an "isolated chaotic zone" (ICZ), separated from the rest of the phase space, remains localized around an AM fixed point for long times even when this point is partially stable in only a few phase-space directions. This localization should reflect an Arnol'd diffusion in an ICZ much slower than that in the rest of phase space. The time evolution of the mean kinetic energy of an initial ensemble containing an ICZ exhibits superdiffusion instead of normal chaotic diffusion.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] From Chaos to Many-body Localization: Some Introductory Notes
    Chotorlishvili, L.
    Stagraczynski, S.
    Schuler, M.
    Berakdar, J.
    ACTA PHYSICA POLONICA A, 2019, 135 (06) : 1155 - 1161
  • [12] Dynamics of strongly interacting systems: From Fock-space fragmentation to many-body localization
    De Tomasi, Giuseppe
    Hetterich, Daniel
    Sala, Pablo
    Pollmann, Frank
    PHYSICAL REVIEW B, 2019, 100 (21)
  • [13] Coulomb drag between quantum wires: A nonequilibrium many-body approach
    Zhou, Chenyi
    Guo, Hong
    PHYSICAL REVIEW B, 2019, 99 (03)
  • [14] Transport in Stark many-body localized systems
    Zisling, Guy
    Kennes, Dante M.
    Bar Lev, Yevgeny
    PHYSICAL REVIEW B, 2022, 105 (14)
  • [15] Dynamical Enhancement of Symmetries in Many-Body Systems
    Agarwal, Kartiek
    Martin, Ivar
    PHYSICAL REVIEW LETTERS, 2020, 125 (08)
  • [16] Burnett coefficients in quantum many-body systems
    Steinigeweg, R.
    Prosen, T.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [17] Symplectic Schrodinger equation for many-body systems
    Amorim, R. G. G.
    Fernandes, M. C. B.
    Khanna, F. C.
    Santana, A. E.
    Vianna, J. D. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (06):
  • [18] Layered chaos in mean-field and quantum many-body dynamics
    Valdez, Marc Andrew
    Shchedrin, Gavriil
    Sols, Fernando
    Carr, Lincoln D.
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [19] Observation of many-body localization of interacting fermions in a quasirandom optical lattice
    Schreiber, Michael
    Hodgman, Sean S.
    Bordia, Pranjal
    Lueschen, Henrik P.
    Fischer, Mark H.
    Vosk, Ronen
    Altman, Ehud
    Schneider, Ulrich
    Bloch, Immanuel
    SCIENCE, 2015, 349 (6250) : 842 - 845
  • [20] Chaos in self-gravitating many-body systems Lyapunov time dependence of N and the influence of general relativity
    Zwart, S. F. Portegies
    Boekholt, T. C. N.
    Por, E. H.
    Hamers, A. S.
    McMillan, S. L. W.
    ASTRONOMY & ASTROPHYSICS, 2022, 659