Electrical Biosensing at Physiological Ionic Strength Using Graphene Field-Effect Transistor in Femtoliter Microdroplet

被引:67
作者
Ono, Takao [1 ]
Kanai, Yasushi [1 ]
Inoue, Koichi [1 ]
Watanabe, Yohei [2 ]
Nakakita, Shin-ichi [3 ]
Kawahara, Toshio [4 ]
Suzuki, Yasuo [5 ]
Matsumoto, Kazuhiko [1 ]
机构
[1] Osaka Univ, Inst Sci & Ind Res, Dept Semicond Elect, Ibaraki, Osaka 5670047, Japan
[2] Kyoto Prefectural Univ Med, Grad Sch Med Sci, Dept Infect Dis, Kyoto 6028566, Japan
[3] Kagawa Univ, Dept Funct Glyc, Life Sci Res Ctr, Miki, Kagawa 7610793, Japan
[4] Chubu Univ, Coll Life & Hlth Sci, Dept Clin Engn, Kasugai, Aichi 4878501, Japan
[5] Chubu Univ, Coll Life & Hlth Sci, Res Inst Life & Hlth Sci, Kasugai, Aichi 4878501, Japan
关键词
Graphene; droplet; enzymatic reaction; Debye screening; Helicobacter pylori; BINDING; UREASE; SERUM;
D O I
10.1021/acs.nanolett.9b01335
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene has strong potential for electrical biosensing owing to its two-dimensional nature and high carrier mobility which transduce the direct contact of a detection target with a graphene channel to a large conductivity change in a graphene field-effect transistor (GFET). However, the measurable range from the graphene surface is highly restricted by Debye screening, whose characteristic length is less than 1 nm at physiological ionic strength. Here, we demonstrated electrical biosensing utilizing the enzymatic products of the target. We achieved quantitative measurements of a target based on the site-binding model and real-time measurement of the enzyme kinetics in femtoliter microdroplets. The combination of a G-FET and microfluidics, named a "lab-on-a-graphene-FET", detected the enzyme urease with high sensitivity in the zeptomole range in 100 mM sodium phosphate buffer. Also, the lab-on-a-graphene-FET detected the gastric cancer pathogen Helicobacter pylori captured at a distance greater than the Debye screening length from the G-FET.
引用
收藏
页码:4004 / 4009
页数:6
相关论文
共 45 条
[1]  
ABERL F, 1992, SENSOR ACTUAT B-CHEM, V6, P186
[2]  
[Anonymous], 1994, INFECT HELICOBACTER, V61, P177
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   DETERMINATION OF UREA IN BLOOD-SERUM BY A UREASE BIOSENSOR BASED ON AN ION-SENSITIVE FIELD-EFFECT TRANSISTOR [J].
BOUBRIAK, OA ;
SOLDATKIN, AP ;
STARODUB, NF ;
SANDROVSKY, AK ;
ELSKAYA, AK .
SENSORS AND ACTUATORS B-CHEMICAL, 1995, 27 (1-3) :429-431
[5]   FIELD-EFFECT TRANSISTOR SENSITIVE TO PENICILLIN [J].
CARAS, S ;
JANATA, J .
ANALYTICAL CHEMISTRY, 1980, 52 (12) :1935-1937
[6]   Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications [J].
Cheng, Chong ;
Li, Shuang ;
Thomas, Arne ;
Kotov, Nicholas A. ;
Haag, Rainer .
CHEMICAL REVIEWS, 2017, 117 (03) :1826-1914
[7]   Biomedical Applications of Graphene and Graphene Oxide [J].
Chung, Chul ;
Kim, Young-Kwan ;
Shin, Dolly ;
Ryoo, Soo-Ryoon ;
Hong, Byung Hee ;
Min, Dal-Hee .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (10) :2211-2224
[8]  
DUNN BE, 1990, J BIOL CHEM, V265, P9464
[9]  
Fidaleo M, 2003, CHEM BIOCHEM ENG Q, V17, P311
[10]   Specific detection of biomolecules in physiological solutions using graphene transistor biosensors [J].
Gao, Ning ;
Gao, Teng ;
Yang, Xiao ;
Dai, Xiaochuan ;
Zhou, Wei ;
Zhang, Anqi ;
Lieber, Charles M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (51) :14633-14638