Compound Poisson Approximation to Convolutions of Compound Negative Binomial Variables

被引:4
作者
Upadhye, N. S. [1 ]
Vellaisamy, P. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[2] Indian Inst Technol, Dept Math, Mumbai 400076, Maharashtra, India
关键词
Compound negative binomial distribution; Compound Poisson distribution; Total variation distance; Compound Poisson approximation; Kerstan's method; Method of exponents; ASYMPTOTIC EXPANSIONS; SUMS;
D O I
10.1007/s11009-013-9352-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the problem of compound Poisson approximation to the convolution of compound negative binomial distributions, under total variation distance, is considered. First, we obtain an error bound using the method of exponents and it is compared with existing ones. It is known that Kerstan's method is more powerful in compound approximation problems. We employ Kerstan's method to obtain better estimates, using higher-order approximations. These bounds are of higher-order accuracy and improve upon some of the known results in the literature. Finally, an interesting application to risk theory is discussed.
引用
收藏
页码:951 / 968
页数:18
相关论文
共 26 条
  • [1] Compound Poisson Approximation via Information Functionals
    Barbour, A. D.
    Johnson, O.
    Kontoyiannis, I.
    Madiman, M.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 1344 - 1368
  • [2] Barbour A.D., 1992, Poisson approximation
  • [3] Barbour A.D., 2004, IMS Lecture Notes, V5, P131
  • [4] ASYMPTOTIC EXPANSIONS IN THE POISSON LIMIT-THEOREM
    BARBOUR, AD
    [J]. ANNALS OF PROBABILITY, 1987, 15 (02) : 748 - 766
  • [5] Boutsikas MV, 2000, ANN APPL PROBAB, V10, P1137
  • [6] Asymptotic expansions in the exponent: A compound Poisson approach
    Cekanavicius, V
    [J]. ADVANCES IN APPLIED PROBABILITY, 1997, 29 (02) : 374 - 387
  • [7] Cekanavicius V., 2006, Liet. Mat. Rink, V46, P67
  • [8] Cekanavicius V., 2004, Liet. Mat. Rink, V44, P443
  • [9] Daley DJ., 2008, GEN THEORY STRUCTURE, V2
  • [10] Dhaene J., 1991, Schweiz. Verein. Versicherungsmath. Mitt, V1, P117