Average Descent Rate Singular Value Decomposition and Two-Dimensional Residual Neural Network for Fault Diagnosis of Rotating Machinery

被引:29
|
作者
Liang, Haopeng [1 ]
Cao, Jie [1 ]
Zhao, Xiaoqiang [2 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Gansu, Peoples R China
[2] Lanzhou Univ Technol, Sch Elect Engn & Informat Engn, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Vibrations; Noise reduction; Convolutional neural networks; Noise measurement; Feature extraction; Deep learning; Average descent rate singular value decomposition (ADR-SVD); fault diagnosis; Gramian angular difference field (GADF); two-dimensional residual neural network (Resnet); SVD; EXTRACTION; NOISE;
D O I
10.1109/TIM.2022.3170973
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fault diagnosis of rotating machinery is difficult under the strong noisy environment. Although singular value decomposition (SVD) can remove noise from vibration signals, the singular value threshold is normally determined by expert experience. To solve this problem, a fault diagnosis method based on average descent rate (ADR)-SVD and two-dimensional residual neural network (Resnet) is proposed. First, ADR-SVD uses the ADR index to construct the singular value descent rate difference spectrum and uses the maximum value of the spectrum as the singular value threshold. The noise reduction process of ADR-SVD requires little expert experience. Then, in order to adaptively identify the fault features of the signals, we introduce Gramian angular difference field (GADF), which can transform the one-dimensional signals into two-dimensional images and preserve the temporal correlation of the one-dimensional signals. Finally, we construct a two-dimensional Resnet to learn image features and identify fault types. The proposed method is tested on Case Western Reserve University (CWRU) bearing dataset, Driveline Dynamic Simulator (DDS) gearbox dataset, and University of Connecticut (UoC) gearbox dataset under the strong noisy environment, which achieves the accuracies of 98.00%, 99.00%, and 98.88%, respectively. The accuracies of other deep learning methods and singular value difference spectrum method are below 95%. The comparisons show that the proposed method has better noise reduction effect and can diagnose the fault type more accurately.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] ART-KOHONEN neural network for fault diagnosis of rotating machinery
    Yang, BS
    Han, T
    An, JL
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2004, 18 (03) : 645 - 657
  • [12] A Fault Diagnosis of Rotating Machinery Based on a Mutual Dimensionless Index and a Convolution Neural Network
    Su, Naiquan
    Zhang, Qinghua
    Zhou, Lingmeng
    Chang, Xiaoxiao
    Xu, Ting
    IEEE INTELLIGENT SYSTEMS, 2023, 38 (04) : 33 - 41
  • [13] Improved singular spectrum decomposition-based 1.5-dimensional energy spectrum for rotating machinery fault diagnosis
    Yan, Xiaoan
    Jia, Minping
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (01)
  • [14] Complex Singular Spectrum Decomposition and Its Application to Rotating Machinery Fault Diagnosis
    Pang, Bin
    Tang, Guiji
    Tian, Tian
    IEEE ACCESS, 2019, 7 : 143921 - 143934
  • [15] A New Method Based on Encoding Data Probability Density and Convolutional Neural Network for Rotating Machinery Fault Diagnosis
    Zhang, Bowen
    Pang, Xinyu
    Zhao, Peng
    Lu, Kaibo
    IEEE ACCESS, 2023, 11 : 26099 - 26113
  • [16] Fault diagnosis of rotating machinery based on improved deep residual network
    Hou Z.
    Wang H.
    Zhou L.
    Fu Q.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (06): : 2051 - 2059
  • [17] Fault Diagnosis of Rotating Machinery Based on 1D-2D Joint Convolution Neural Network
    Du, Wenliao
    Hu, Pengjie
    Wang, Hongchao
    Gong, Xiaoyun
    Wang, Shuangyuan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (05) : 5277 - 5285
  • [18] An improved deep residual network with multiscale feature fusion for rotating machinery fault diagnosis
    Deng, Feiyue
    Ding, Hao
    Yang, Shaopu
    Hao, Rujiang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (02)
  • [19] An intelligent fault diagnosis method for rotating machinery based on data fusion and deep residual neural network
    Binsen Peng
    Hong Xia
    Xinzhi Lv
    M. Annor-Nyarko
    Shaomin Zhu
    Yongkuo Liu
    Jiyu Zhang
    Applied Intelligence, 2022, 52 : 3051 - 3065
  • [20] Improved residual attention convolutional neural network for rotating machinery fault diagnosis in the presence of strong noise
    Xianglong Meng
    Jinfeng Li
    Yan Zhang
    Songhua Ma
    Signal, Image and Video Processing, 2025, 19 (6)