Thermal Properties, Molecular Structure, and Thin-Film Organic Semiconductor Crystallization

被引:20
作者
Dull, Jordan T. [1 ]
Wang, Yucheng [2 ]
Johnson, Holly [3 ]
Shayegan, Komron [1 ]
Shapiro, Ellie [1 ]
Priestley, Rodney D. [1 ,2 ]
Geerts, Yves H. [4 ,5 ]
Rand, Barry P. [1 ,6 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[3] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[4] Univ Libre Bruxelles ULB, Int Solvay Inst Phys & Chem, B-1050 Brussels, Belgium
[5] Univ Libre Bruxelles ULB, Lab Polymer Chem, B-1050 Brussels, Belgium
[6] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
ACTIVATED DELAYED FLUORESCENCE; MELTING TEMPERATURE; POLYMORPHISM; DEPOSITION; NUCLEATION; C-60;
D O I
10.1021/acs.jpcc.0c09408
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The crystallinity of a group of organic small molecules is investigated by vapor depositing the materials into thin films followed by a thermal annealing step. The materials are categorized into three groups: platelet-forming, spherulite-forming, and those that resist crystallization. Differential scanning calorimetry is utilized to determine the bulk thermal properties of these materials, which provide a reliable indicator of a material's crystallization motif. Platelet-forming materials tend to be characterized by high melting points (T-m) and high magnitude crystallization driving force at the material's crystallization temperature (Delta G(c)). The materials that resist crystallization as a thin film have small Delta G(c). These results provide guidelines that can help determine which organic molecules have a greater likelihood of growing into large-scale crystalline frameworks, a key step for improving the charge carrier mobility and exciton diffusion length in organic semiconductors.
引用
收藏
页码:27213 / 27221
页数:9
相关论文
共 53 条
[21]  
Herlach D. M., 2007, METASTABLE SOLIDS UN, P59
[22]   Geometric and Electronic Structure of Templated C60 on Diindenoperylene Thin Films [J].
Hinderhofer, A. ;
Gerlach, A. ;
Broch, K. ;
Hosokai, T. ;
Yonezawa, K. ;
Kato, K. ;
Kera, S. ;
Ueno, N. ;
Schreiber, F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (02) :1053-1058
[23]   Improving operation lifetime of OLED by using thermally activated delayed fluorescence as host [J].
Hu J.-T. ;
Hu S. ;
Ye K.-L. ;
Wei Q.-Q. ;
Xu K. ;
Wang X.-H. .
Optoelectronics Letters, 2017, 13 (04) :271-274
[24]   KINETICS OF CRYSTAL NUCLEATION IN SILICATE-GLASSES [J].
JAMES, PF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1985, 73 (1-3) :517-540
[25]   Substrate-Induced and Thin-Film Phases: Polymorphism of Organic Materials on Surfaces [J].
Jones, Andrew O. F. ;
Chattopadhyay, Basab ;
Geerts, Yves H. ;
Resel, Roland .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (14) :2233-2255
[26]   High-Performance Organic Photovoltaic Devices Using a New Amorphous Molecular Material with High Hole Drift Mobility, Tris[4-(5-phenylthiophen-2-yl)phenyl]amine [J].
Kageyama, Hiroshi ;
Ohishi, Hitoshi ;
Tanaka, Masatake ;
Ohmori, Yutaka ;
Shirota, Yasuhiko .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (24) :3948-3955
[27]  
Kim JH, 2001, MACROMOL RAPID COMM, V22, P386, DOI 10.1002/1521-3927(20010301)22:6<386::AID-MARC386>3.0.CO
[28]  
2-S
[29]   Characterisation of the properties of surface-treated indium-tin oxide thin films [J].
Kim, JS ;
Cacialli, F ;
Granström, M ;
Friend, RH ;
Johansson, N ;
Salaneck, WR ;
Daik, R ;
Feast, WJ .
SYNTHETIC METALS, 1999, 101 (1-3) :111-112
[30]   Asymmetric triaryldiamines as thermally stable hole transporting layers for organic light-emitting devices [J].
Koene, BE ;
Loy, DE ;
Thompson, ME .
CHEMISTRY OF MATERIALS, 1998, 10 (08) :2235-2250