Groupoid gradings: A Morita context, semiprimality, and a Bergman-type question

被引:3
作者
Flores, Daiana [1 ]
Morgado, Andrea [2 ]
Paques, Antonio [3 ]
机构
[1] Univ Fed Santa Maria, Dept Matemat, Santa Maria, RS, Brazil
[2] Univ Fed Pelotas, Dept Matemat & Estat, Inst Fis & Matemat, Campus Capao Leao, Pelotas, RS, Brazil
[3] Univ Fed Rio Grande do Sul, Inst Matemat & Estat, BR-91509900 Porto Alegre, RS, Brazil
关键词
Bergman's question; groupoid action; Groupoid grading; Morita context; semiprimality; smash product;
D O I
10.1080/00927872.2019.1567745
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are interested in some natural consequences arising from the canonical duality relation between the concepts of groupoid grading and groupoid action. Any algebra A over a field K graded by a finite groupoid has a canonical structure of a module algebra over the dual algebra of the groupoid algebra . The results here presented concern to the multiplicative structure of the smash product algebra and its representations. An application is the affirmative answer to a Bergmann-type question for groupoid gradings.
引用
收藏
页码:3500 / 3519
页数:20
相关论文
共 19 条
[1]   PARTIAL GROUPOID ACTIONS: GLOBALIZATION, MORITA THEORY, AND GALOIS THEORY [J].
Bagio, Dirceu ;
Paques, Antonio .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) :3658-3678
[2]   PARTIAL ACTIONS OF ORDERED GROUPOIDS ON RINGS [J].
Bagio, Dirceu ;
Flores, Daiana ;
Paques, Antonio .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (03) :501-517
[3]  
BERGMAN G, JACOBSON RADICALS GR
[4]   Weak Hopf algebras I.: Integral theory and C*-structure [J].
Böhm, G ;
Nill, F ;
Szlachányi, K .
JOURNAL OF ALGEBRA, 1999, 221 (02) :385-438
[5]  
Caenepeel S, 2007, REV ROUM MATH PURES, V52, P151
[6]  
Caenepeel S., 2000, CONT MATH, V206, P31
[7]   GROUP-GRADED RINGS, SMASH PRODUCTS, AND GROUP-ACTIONS [J].
COHEN, M ;
MONTGOMERY, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (01) :237-258
[8]  
Divinsky N., 1965, MATH EXPOSITIONS, V14
[9]  
Gardner B. J., 2004, PURE APPL MATH
[10]  
Herstein I.N, 1968, Carus Math. Monograph, V15