Significance of hydrogen bonding networks in the proton-coupled electron transfer reactions of photosystem II from a quantum-mechanics perspective

被引:3
|
作者
Chai, Jun [1 ]
Zheng, Zhaoyang [2 ]
Pan, Hui [3 ]
Zhang, Shengbai [4 ]
Lakshmi, K. V. [5 ,6 ]
Sun, Yi-Yang [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 201899, Peoples R China
[2] China Acad Engn Phys, Inst Fluid Phys, Natl Key Lab Shock Wave & Detonat Phys, Mianyang 621900, Sichuan, Peoples R China
[3] Univ Macau, Joint Key Lab Minist Educ, Inst Appl Phys & Mat Engn, Taipa 999078, Macao, Peoples R China
[4] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[5] Rensselaer Polytech Inst, Dept Chem & Chem Biol, Troy, NY 12180 USA
[6] Rensselaer Polytech Inst, Baruch Ctr Biochem Solar Energy Res 60, Troy, NY 12180 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
OXYGEN-EVOLVING COMPLEX; WATER OXIDATION; CRYSTAL-STRUCTURE; TYROSINE-D; RESOLUTION; PHOTOCHEMISTRY; PHOTOSYNTHESIS; CATALYSTS; CLUSTER; STATE;
D O I
10.1039/c9cp00868c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The photosynthetic protein complex, photosystem II (PSII), conducts the light-driven water-splitting reaction with unrivaled efficiency. Proton-coupled electron transfer (PCET) reactions at the redox-active tyrosine residues are thought to play a critical role in the water-splitting chemistry. Addressing the fundamental question as to why the tyrosine residue, Y-Z, is kinetically competent in comparison to a symmetrically placed tyrosine residue, Y-D, is important for the elucidation of the mechanism of PCET in the water-splitting reaction of PSII. Here, using all-quantum-mechanical calculations we study PCET at the Y-Z and Y-D residues of PSII. We find that when Y-Z is in its protein matrix under physiological conditions, the HOMO of Y-Z constitutes the HOMO of the whole system. In contrast, the HOMO of Y-D is buried under the electronic states localized elsewhere in the protein matrix and PCET at Y-D requires the transfer of the phenolic proton, which elevates the HOMO of Y-D to become the HOMO of the whole system. This leads to the oxidation of Y-D, albeit on a slower timescale. Our study reveals that the key differences between the electronic structure of Y-Z and Y-D are primarily determined by the protonation state of the respective hydrogen-bonding partners, D1-His190 and D2-His189, or more generally by the H-bonding network of the protein matrix.
引用
收藏
页码:8721 / 8728
页数:8
相关论文
共 50 条
  • [21] Spectroscopic monitoring of proton transfer and proton-coupled electron transfer reactions
    Eisenhart, Thomas
    Howland, William
    Lennox, J.
    Dempsey, Jillian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [22] Tuning the reduction potential of quinones by controlling the effects of hydrogen bonding, protonation and proton-coupled electron transfer reactions
    Shi, Raymond R. S.
    Tessensohn, Malcolm E.
    Lauw, Sherman J. L.
    Foo, Nicolette A. B. Y.
    Webster, Richard D.
    CHEMICAL COMMUNICATIONS, 2019, 55 (16) : 2277 - 2280
  • [23] Proton-Coupled Electron Transfer and Hydrogen Tunneling in Olive Oil Phenol Reactions
    Toric, Jelena
    Markovic, Ana Karkovic
    Mustac, Stipe
    Pulitika, Anamarija
    Brala, Cvijeta Jakobusic
    Pilepic, Viktor
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [24] Effects of internal hydrogen bonding on proton-coupled electron transfer between phenols and Ru(II)-polypyridine complexes
    Irebo, T
    Aukauloo, A
    Hammarström, L
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U2935 - U2935
  • [25] Theoretical studies of proton-coupled electron transfer reactions
    Hammes-Schiffer, S
    Iordanova, N
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1655 (1-3): : 29 - 36
  • [26] A THEORY OF PROTON-COUPLED ELECTRON-TRANSFER REACTIONS
    CUKIER, RI
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 210 : 101 - PHYS
  • [27] Proton-coupled electron transfer reactions in solution and proteins
    Hammes-Schiffer, Sharon
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U2789 - U2789
  • [28] Termolecular proton-coupled electron transfer reactions: Separating proton and electron transfer effects
    Morris, Wesley
    Mayer, James
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [29] Proton-coupled electron transfer reactions in solution.
    Hammes-Schiffer, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U229 - U229
  • [30] Theoretical perspectives on proton-coupled electron transfer reactions
    Hammes-Schiffer, S
    ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (04) : 273 - 281