Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior

被引:486
作者
Wood, Kevin N. [1 ]
Noked, Malachi [2 ]
Dasgupta, Neil P. [1 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Bar Ilan Univ, Dept Chem, IL-5290002 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
ATOMIC LAYER DEPOSITION; DENDRITE FORMATION; BATTERIES; GROWTH; ELECTRODEPOSITION; PERFORMANCE; DISSOLUTION; MICROSCOPY; LIQUID; CELLS;
D O I
10.1021/acsenergylett.6b00650
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li metal anodes are often considered a "holy grail" in the field of rechargeable batteries. Accordingly, the research community continuously seeks new strategies to improve their cyclability and reduce interfacial degradation. However, many recent reports focus on approaches that mitigate the symptoms of poor performance due to dendrites without addressing the underlying root cause of why they form and how they evolve. We propose that an emphasis on purely performance-based metrics has diluted the community's understanding of why a certain methodology is (un)successful. Furthermore, the lack of consistent protocols for reporting cell performance and inconsistent terminology for describing physical phenomena that occur at the Li anode make quantitative comparison difficult. The goal of this Perspective is to motivate the need for more consistent and fundamental research on the interfacial electrochemistry on Li metal anodes. Herein we provide an overview of: 1) recent advances in understanding the fundamental behavior of Li metal 2) the different "dendrite" morphologies (needle, mossy, fractal) often observed during cycling 3) the corresponding electrochemical and mechanical signatures of these various dendrites during cycling 4) the various failure modes of Li metal anodes and 5) how these failure modes are related to interactions at the electrode/electrolyte interface. As a result of these discussion points, five major questions are proposed that should be addressed through fundamental research in order to formulate design rules for mitigating deleterious performance of Li metal anodes, and standard experimental conditions are proposed that should be taken into account when reporting new strategies for Li stabilization.
引用
收藏
页码:664 / 672
页数:9
相关论文
共 38 条
[1]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[2]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[3]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[4]   Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode [J].
Bieker, Georg ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :8670-8679
[5]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[6]   Lithium-air and lithium-sulfur batteries [J].
Bruce, Peter G. ;
Hardwick, Laurence J. ;
Abraham, K. M. .
MRS BULLETIN, 2011, 36 (07) :506-512
[7]  
Cao Y, 2016, CHEMELECTROCHEM, P1
[8]   Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7Li MRI [J].
Chang, Hee Jung ;
Ilott, Andrew J. ;
Trease, Nicole M. ;
Mohammadi, Mohaddese ;
Jerschow, Alexej ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) :15209-15216
[9]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[10]   More details on the new LiMnO2 rechargeable battery technology developed at Tadiran [J].
Dan, P ;
Mengeritsky, E ;
Aurbach, D ;
Weissman, I ;
Zinigrad, E .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :443-447