On a necessary aspect for the Riesz basis property for indefinite Sturm-Liouville problems

被引:2
作者
Kostenko, Aleksey [1 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
HELP inequality; indefinite Sturm-Liouville problem; Riesz basis; LRG condition; SIMILARITY PROBLEM; OPERATORS; LITTLEWOOD; HARDY; INEQUALITIES;
D O I
10.1002/mana.201300104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1996, H. Volkmer observed that the inequality (integral(1)(-1) 1/vertical bar r vertical bar f'vertical bar(2)dx)(2) <= K-2 integral(1)(-1) vertical bar f vertical bar(2) dx integral(1)(-1)vertical bar(1/r f')'vertical bar(2) dx is satisfied with some positive constant K > 0 for a certain class of functions f on [-1, 1] if the eigenfunctions of the problem -y '' = lambda r(x)y, y(-1) = y(1) = 0 form a Riesz basis of the Hilbert space L-vertical bar r vertical bar(2)(-1, 1). Here the weight r is an element of L-1(-1, 1) is assumed to satisfy xr( x) > 0 a.e. on (-1, 1). We present two criteria in terms of Weyl-Titchmarsh m-functions for the Volkmer inequality to be valid. Note that one of these criteria is new even for the classical HELP inequality. Using these results we improve the result of Volkmer by showing that this inequality is valid if the operator associated with the spectral problem satisfies the linear resolvent growth condition. In particular, we show that the Riesz basis property of eigenfunctions is equivalent to the linear resolvent growth if r is odd. (C) 2014 WILEY- VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1710 / 1732
页数:23
相关论文
共 25 条
[1]   INDEFINITE STURM-LIOUVILLE PROBLEMS AND HALF-RANGE COMPLETENESS [J].
BEALS, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (03) :391-407
[3]   SPECTRAL ASYMPTOTICS FOR STURM-LIOUVILLE EQUATIONS [J].
BENNEWITZ, C .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1989, 59 :294-338
[4]  
Bennewitz C., 1987, Internat. Schriftenreihe Numer. Math., V80, P337
[5]   A REVIEW OF A RIESZ BASIS PROPERTY FOR INDEFINITE STURM-LIOUVILLE PROBLEMS [J].
Binding, Paul ;
Fleige, Andreas .
OPERATORS AND MATRICES, 2011, 5 (04) :735-755
[6]  
Binding P, 2010, OPER THEORY ADV APPL, V198, P87
[7]  
Brown BM, 2008, P SYMP PURE MATH, V77, P337
[8]  
Buldygin VV, 2007, THEOR PROBAB MATH ST, V77, P13
[9]   The Riesz Basis Property of an Indefinite Sturm-Liouville Problem with Non-Separated Boundary Conditions [J].
Curgus, Branko ;
Fleige, Andreas ;
Kostenko, Aleksey .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 77 (04) :533-557
[10]   NORM INEQUALITIES INVOLVING DERIVATIVES [J].
EVANS, WD ;
ZETTL, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1978, 82 :51-70