Signed-rank regression inference via empirical likelihood

被引:6
作者
Bindele, Huybrechts F. [1 ]
Zhao, Yichuan [2 ]
机构
[1] Univ S Alabama, Dept Math & Stat, Mobile, AL 36688 USA
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
关键词
signed-rank norm; empirical likelihood; confidence intervals; DEPENDENT OBSERVATIONS; NONLINEAR-REGRESSION;
D O I
10.1080/00949655.2015.1032288
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For the general stochastic regression analysis of complete data, Bindele and Abebe [ Bounded influence nonlinear signed-rank regression. Can J Stat. 2012; 40(1): 172-189. Available from: http://dx. doi. org/10.1002/cjs. 10134] proposed the signed-rank (SR) estimator. However, there exists an over-coverage problem for the confidence intervals of the regression parameters when the sample size is small. In this paper, we investigate an empirical likelihood (EL) approach to construct confidence intervals for the regression parameters based on the SR estimating equation. The limiting distribution of log-empirical likelihood ratio is.2 distribution. We carry out extensive simulation studies to compare the proposed method with the normal approximation-based method. The simulation results show that the proposed method outperforms the existing method in terms of the coverage probability and average length of confidence intervals. We illustrate the EL method using a real data example.
引用
收藏
页码:729 / 739
页数:11
相关论文
共 17 条
[1]   On the Consistency of a Class of Nonlinear Regression Estimators [J].
Abebe, Asheber ;
McKean, Joseph W. ;
Bindele, Huybrechts F. .
PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2012, 8 (03) :543-555
[2]  
[Anonymous], 1980, WILEY SERIES PROBABI
[3]   Asymptotics of the signed-rank estimator under dependent observations [J].
Bindele, Huybrechts F. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 146 :49-55
[4]   Bounded influence nonlinear signed-rank regression [J].
Bindele, Huybrechts F. ;
Abebe, Asheber .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2012, 40 (01) :172-189
[5]   Empirical likelihood based rank regression inference [J].
Bishop, Ellen E. ;
Zhao, Yichuan .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (04) :746-755
[6]   RANK STATISTICS UNDER DEPENDENT OBSERVATIONS AND APPLICATIONS TO FACTORIAL-DESIGNS [J].
BRUNNER, E ;
DENKER, M .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 42 (03) :353-378
[7]  
Hajek J., 1967, Theory or Rank Tests
[8]   On asymptotic normality in nonlinear regression [J].
Haupt, Harry ;
Oberhofer, Walter .
STATISTICS & PROBABILITY LETTERS, 2009, 79 (06) :848-849
[9]  
Hettmansperger T.P., 1998, Robust nonparametric statistical methods, volume 5 of Kendall's Library of Statistics, V5
[10]   Jackknife Empirical Likelihood [J].
Jing, Bing-Yi ;
Yuan, Junqing ;
Zhou, Wang .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) :1224-1232