Describing faces in plane triangulations

被引:27
作者
Borodin, O. V. [1 ,2 ]
Ivanova, A. O. [3 ]
Kostochka, A. V. [1 ,4 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Ammosov North Eastern Fed Univ, Yakutsk 677891, Russia
[4] Univ Illinois, Urbana, IL 61801 USA
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
Planar graph; Plane triangulation; Structure properties; 3-polytope; Lebesgue's theorem; Weight; BOUNDARY VERTICES; LIGHT SUBGRAPHS; GRAPHS; TRIANGLES; WEIGHT;
D O I
10.1016/j.disc.2013.11.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lebesgue (1940) proved that every plane triangulation contains a face with the vertex-degrees majorized by one of the following triples: (3, 6, infinity), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13), (4, 4, infinity), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7). Jendrol' (1999) improved this description, except for (4, 4, infinity) and (4, 6, 11), to (3, 4, 35), (3, 5, 21), (3, 6, 20), (3, 7, 16), (3, 8, 14), (3, 9, 14), (3, 10, 13), (4, 4, infinity), (4, 5, 13), (4, 6, 17), (4, 7, 8), (5, 5, 7), (5, 6, 6) and conjectured that the tight description is (3, 4, 30), (3, 5, 18), (3, 6, 20), (3, 7, 14), (3, 8, 14), (3, 9, 12), (3, 10,12), (4,4, infinity), (4, 5, 10), (4, 6, 15), (4, 7, 7), (5, 5, 7), (5, 6, 6). We prove that in fact every plane triangulation contains a face with the vertex-degrees majorized by one of the following triples, where every parameter is tight: (3, 4, 31), (3, 5, 21), (3, 6,20), (3, 7, 13), (3, 8, 14), (3, 9, 12), (3, 10, 12), (4,4, infinity), (4, 5, 11), (4, 6, 10), (4, 7, 7), (5, 5, 7), (5, 6, 6). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 61
页数:15
相关论文
共 32 条