THE PROOF OF ORE'S CONJECTURE [after Ellers-Gordeev and Liebeck-O'Brien-Shalev-Tiep]

被引:0
作者
Malle, Gunter [1 ]
机构
[1] TU Kaiserslautern, Fachbereich Math, D-67653 Kaiserslautern, Germany
关键词
PRESCRIBED SEMISIMPLE PART; FINITE SIMPLE-GROUPS; CONJUGACY CLASSES; WORD MAPS; GAUSS DECOMPOSITION; CHEVALLEY-GROUPS; LIE TYPE; COMMUTATORS; PRODUCTS; REPRESENTATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ore's conjecture asserts that in a non-abelian finite simple group, every element is a commutator. The proof of this statement was recently completed by Liebeck, O'Brien, Shalev and Tiep. We report on the various ingredients used in that proof, reaching from Deligne-Lusztig character theory to explicit computations. We also mention several related, still open problems.
引用
收藏
页码:325 / +
页数:25
相关论文
共 58 条
  • [1] [Anonymous], 1985, Lecture Notes in Mathematics
  • [2] [Anonymous], 1984, ANN MATH STUD
  • [3] [Anonymous], 1964, Proc. Amer. Math. Soc, DOI 10.1090/S0002-9939-1964-0161944-X
  • [4] Bertram E., 1972, J. Combin. Theory Ser. A, V12, P368, DOI [10.1016/0097-3165(72)90102-1, DOI 10.1016/0097-3165(72)90102-1]
  • [6] BONTEN O, 1993, AACHENER BEITRAGE MA, V7
  • [7] Borel A., 1983, Enseign. Math., V29, P151
  • [8] BRENNER JL, 1983, ARS COMBINATORIA, V16, P57
  • [9] Carter R., 1985, FINITE GROUPS LIE TY
  • [10] Cheng-hao X., 1965, Sci. Sinica, V14, P339