ERGODICITY FOR STOCHASTIC POROUS MEDIA EQUATIONS WITH MULTIPLICATIVE NOISE

被引:14
作者
Dareiotis, Konstantinos [1 ]
Gess, Benjamin [2 ,3 ]
Tsatsoulis, Pavlos [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, Germany
[3] Univ Bielefeld, Fac Math, D-33615 Bielefeld, Germany
关键词
stochastic porous media; entropy solutions; invariant measures; optimal mixing rates; RANDOM ATTRACTORS; DIFFUSION; EXISTENCE;
D O I
10.1137/19M1278521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The long time behavior of solutions to stochastic porous media equations with nonlinear multiplicative noise on bounded domains with Dirichlet boundary data is studied. Based on weighted L-1-estimates, the existence and uniqueness of invariant measures with optimal bounds on the rate of mixing are proved. Along the way, the existence and uniqueness of entropy solutions are shown.
引用
收藏
页码:4524 / 4564
页数:41
相关论文
共 36 条
  • [1] [Anonymous], 2013, TRANSPORTATION TECHN
  • [2] [Anonymous], 2014, ENCY MATH APPL
  • [3] LARGE TIME BEHAVIOR OF SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN BOUNDED DOMAINS
    ARONSON, DG
    PELETIER, LA
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 39 (03) : 378 - 412
  • [4] BARBU V., 2016, Lecture Notes in Math, V2163
  • [5] On a random scaled porous media equation
    Barbu, Viorel
    Roeckner, Michael
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) : 2494 - 2514
  • [6] The Global Random Attractor for a Class of Stochastic Porous Media Equations
    Beyn, Wolf-Juergen
    Gess, Benjamin
    Lescot, Paul
    Roeckner, Michael
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (03) : 446 - 469
  • [7] BOGACHEV V. I., 2004, Dokl. Akad. Nauk., V396, P7
  • [8] A blob method for diffusion
    Carrillo, Jose Antonio
    Craig, Katy
    Patacchini, Francesco S.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (02)
  • [9] Strong solutions of stochastic generalized porous media equations:: Existence, uniqueness, and ergodicity
    Da Prato, G
    Röckner, M
    Rozovskii, BL
    Wang, FY
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (02) : 277 - 291
  • [10] Weak solutions to stochastic porous media equations
    DA Prato, G
    Röckner, M
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2004, 4 (02) : 249 - 271