Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering

被引:40
作者
Du, Juan [1 ]
Zhu, Tonghe [2 ]
Yu, Haiyan [1 ]
Zhu, Jingjing [2 ]
Sun, Changbing [1 ]
Wang, Jincheng [1 ]
Chen, Sihao [1 ]
Wang, Jihu [1 ]
Guo, Xuran [2 ]
机构
[1] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Chem Chem Engn & Biotechnol, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
关键词
Silk fibroin; Poly(ester-urethane) urea elastomer; Nanofiber; Electrospinning; Heart valve tissue engineering; BIOMEDICAL APPLICATIONS; MECHANICAL-PROPERTIES; SPIDER SILK; FIBROIN; FABRICATION; FIBERS; POLYURETHANE; HYDROGELS; MATRIX; ENDOTHELIALIZATION;
D O I
10.1016/j.apsusc.2018.03.077
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tissue engineering heart valves (TEHV) are thought to have many advantages in low immunogenicity, good histocompatibility, excellent mechanical properties. In this paper, we reported the fabrication and characterization of a novel composite nanofibrous scaffold consisting of silk fibroin (SF) and poly (ester-urethane) urea (LDI-PEUU) by using electrospinning. Chemical and physical properties of scaffolds were evaluated using scanning electron microscopy, attenuated total reflectance Fourier transform infrared, X-ray diffraction, contact angle measurement, thermogravimetric analysis, biodegradation test and tensile strength analysis. We determined that the composite scaffolds supported the growth of human umbilical vein endothelial cell (HUVEC). The results of cell proliferation and cell morphology indicate that SF/LDI-PEUU nanofibers promoted cell viability, which supporting the application in tissue engineering. All results clarified that SF/LDI-PEUU (40:60) nanofibrous scaffolds meet the required specifications for tissue engineering and could be used as a promising construct for heart valve tissue engineering. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:269 / 278
页数:10
相关论文
共 47 条
[1]   Extracellular matrix-based biomaterial scaffolds and the host response [J].
Aamodt, Joseph M. ;
Grainger, David W. .
BIOMATERIALS, 2016, 86 :68-82
[2]   Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review [J].
Adipurnama, Iman ;
Yang, Ming-Chien ;
Ciach, Tomasz ;
Butruk-Raszeja, Beata .
BIOMATERIALS SCIENCE, 2017, 5 (01) :22-37
[3]   Electrospun poly(N-isopropyl acrylamide)/poly(caprolactone) fibers for the generation of anisotropic cell sheets [J].
Allen, Alicia C. B. ;
Barone, Elissa ;
Crosby, Cody O'Keefe ;
Suggs, Laura J. ;
Zoldan, Janet .
BIOMATERIALS SCIENCE, 2017, 5 (08) :1661-1669
[4]   Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds [J].
Applegate, Matthew B. ;
Coburn, Jeannine ;
Partlow, Benjamin P. ;
Moreau, Jodie E. ;
Mondia, Jessica P. ;
Marelli, Benedetto ;
Kaplan, David L. ;
Omenetto, Fiorenzo G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (39) :12052-12057
[5]   Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering [J].
Ayaz, H. Goezde Senel ;
Perets, Anat ;
Ayaz, Hasan ;
Gilroy, Kyle D. ;
Govindaraj, Muthu ;
Brookstein, David ;
Lelkes, Peter I. .
BIOMATERIALS, 2014, 35 (30) :8540-8552
[6]   Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications [J].
Aznar-Cervantes, Salvador ;
Roca, Maria I. ;
Martinez, Jose G. ;
Meseguer-Olmo, Luis ;
Cenis, Jose L. ;
Moraleda, Jose M. ;
Otero, Toribio F. .
BIOELECTROCHEMISTRY, 2012, 85 :36-43
[7]   Dimerization of the Conserved N-Terminal Domain of a Spider Silk Protein Controls the Self-Assembly of the Repetitive Core Domain [J].
Bauer, Joschka ;
Scheibel, Thomas .
BIOMACROMOLECULES, 2017, 18 (08) :2521-2528
[8]   Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: Promising platform for bone tissue engineering [J].
Behera, Sibaram ;
Naskar, Deboki ;
Sapru, Sunaina ;
Bhattacharjee, Promita ;
Dey, Tuli ;
Ghosh, Ananta K. ;
Mandal, Mahitosh ;
Kundu, Subhas C. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2017, 13 (05) :1745-1759
[9]   Impact of silk biomaterial structure on proteolysis [J].
Brown, Joseph ;
Lu, Chia-Li ;
Coburn, Jeannine ;
Kaplan, David L. .
ACTA BIOMATERIALIA, 2015, 11 :212-221
[10]   Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel [J].
Davis, Nicolynn E. ;
Beenken-Rothkopf, Liese N. ;
Mirsoian, Annie ;
Kojic, Nikola ;
Kaplan, David L. ;
Barron, Annelise E. ;
Fontaine, Magali J. .
BIOMATERIALS, 2012, 33 (28) :6691-6697