Numerical study of time-splitting and space-time adaptive wavelet scheme for Schrodinger equations

被引:2
作者
Zhang, R. [1 ]
Zhang, K. [1 ]
Zhou, Y. S. [1 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger equation; time splitting; space-time adaptive wavelet;
D O I
10.1016/j.cam.2005.03.086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a time-splitting and space-time adaptive wavelet scheme for solving Schrodinger equations with a small Planck constant. The scheme is stable and it can overcome high-frequency pseudo-oscillation of the solution. The concrete steps and numerical experiments are also given. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 15 条
[1]   A WAVELET BASED SPACE-TIME ADAPTIVE NUMERICAL-METHOD FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
BACRY, E ;
MALLAT, S ;
PAPANICOLAOU, G .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1992, 26 (07) :793-834
[2]   On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) :487-524
[3]  
BEYLKIN G, 1989, YALEDCRRR696
[4]  
BEYLKIN G, 1991, P EC PROBL LIN APPL
[5]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[6]   Nonlinear matter wave dynamics with a chaotic potential [J].
Gardiner, SA ;
Jaksch, D ;
Dum, R ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW A, 2000, 62 (02) :21
[7]  
Jin S., 1994, SINGULAR LIMITS DISP
[8]   Nonlinear problems in quantum semiconductor modeling [J].
Jüngel, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) :5873-5884
[9]  
Jungel A., 2001, PROGR NONLINEAR DIFF
[10]  
LIANDRAT J, 1990, 9083 NASA ICASE