Global in time solvability of the Navier-Stokes equations in the half-space

被引:2
作者
Chang, Tongkeun [1 ]
Jin, Bum Ja [2 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 136701, South Korea
[2] Mokpo Natl Univ, Dept Math, Muan Gun 534729, South Korea
关键词
Stokes equations; Navier-Stokes equations; Homogeneous initial boundary value; Half-space; BOUNDARY-VALUE-PROBLEM; INITIAL VALUES;
D O I
10.1016/j.jde.2019.04.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the initial value problem of the Navier-Stokes equations in the half-space. Let. a solenoidal initial velocity be given in the function space (B) over dot(pq,0)(alpha-2/2)(R-+(n)) for 0 < alpha < 2, 1 < p, q < infinity with alpha + 1 = n/p + 2/q and 2/q < 1 + n/p.We prove the global in time existence of weak solution u is an element of L-q (0, infinity; (B) over dot(pq)(alpha)(R-+(n) )) boolean AND L-q0 (0, infinity; L-p0(R-+(n)))for some p < p0 < infinity and q < q0 < infinity with n/p0 + 2/q0 = 1, when the given initial velocity has small norm in function space (B) over dot(p0q0,0)(-2/q0)(R-+(n) ) (superset of (B) over dot(pq,0)(alpha-2/q)(R-+(n))) The solution is unique in the class L-q0 (0, infinity; L-P0 (R-+(n))). Pressure estimates are also given. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:4293 / 4319
页数:27
相关论文
共 27 条
[1]  
Adams R.A., 2003, PURE APPL MATH, V140
[3]  
[Anonymous], 2001, J. Math. Sci. (N. Y.)
[4]  
Bergh J., 1976, Interpolation spaces. An introduction
[5]   Strong solutions to the incompressible Navier-Stokes equations in the half-space [J].
Cannone, M ;
Planchon, F ;
Schonbek, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (5-6) :903-924
[6]  
Chae D, 2004, ASYMPTOTIC ANAL, V38, P339
[7]  
Chang T., 2018, ANN U FERRARA, V64, P47, DOI DOI 10.1007/s11565-017-0287-x
[8]  
Chang T., 2019, ANN U FERRARA, V65, P29
[9]   Initial and boundary values for Lαq(Lp) solution of the Navier-Stokes equations in the half-space [J].
Chang, Tongkeun ;
Jin, Bum Ja .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (01) :70-90
[10]   Solvability of the initial-boundary value problem of the Navier-Stokes equations with rough data [J].
Chang, Tongkeun ;
Jin, Bum Ja .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 :498-517