Unsupervised machine learning in atomistic simulations, between predictions and understanding

被引:135
作者
Ceriotti, Michele [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Mat, Lab Computat Sci & Modeling, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
FREE-ENERGY LANDSCAPES; NONLINEAR DIMENSIONALITY REDUCTION; AUTOMATIC IDENTIFICATION; ORDER PARAMETERS; MOUNTAIN PASSES; DYNAMICS; SURFACES; NETWORK; SCALE; REPRESENTATION;
D O I
10.1063/1.5091842
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Automated analyses of the outcome of a simulation have been an important part of atomistic modeling since the early days, addressing the need of linking the behavior of individual atoms and the collective properties that are usually the final quantity of interest. Methods such as clustering and dimensionality reduction have been used to provide a simplified, coarse-grained representation of the structure and dynamics of complex systems from proteins to nanoparticles. In recent years, the rise of machine learning has led to an even more widespread use of these algorithms in atomistic modeling and to consider different classification and inference techniques as part of a coherent toolbox of data-driven approaches. This perspective briefly reviews some of the unsupervised machine-learning methods-that are geared toward classification and coarse-graining of molecular simulations-seen in relation to the fundamental mathematical concepts that underlie all machine-learning techniques. It discusses the importance of using concise yet complete representations of atomic structures as the starting point of the analyses and highlights the risk of introducing preconceived biases when using machine learning to rationalize and understand structure-property relations. Supervised machine-learning techniques that explicitly attempt to predict the properties of a material given its structure are less susceptible to such biases. Current developments in the field suggest that using these two classes of approaches side-by-side and in a fully integrated mode, while keeping in mind the relations between the data analysis framework and the fundamental physical principles, will be key to realizing the full potential of machine learning to help understand the behavior of complex molecules and materials. Published under license by AIP Publishing.
引用
收藏
页数:10
相关论文
共 117 条
[1]   Efficient and Direct Generation of Multidimensional Free Energy Surfaces via Adiabatic Dynamics without Coordinate Transformations [J].
Abrams, Jerry B. ;
Tuckerman, Mark E. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (49) :15742-15757
[2]   Crystal structure prediction using the minima hopping method [J].
Amsler, Maximilian ;
Goedecker, Stefan .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (22)
[3]   Generalized convex hull construction for materials discovery [J].
Anelli, Andrea ;
Engel, Edgar A. ;
Pickard, Chris J. ;
Ceriotti, Michele .
PHYSICAL REVIEW MATERIALS, 2018, 2 (10)
[4]   Solid-liquid interface free energy through metadynamics simulations [J].
Angioletti-Uberti, Stefano ;
Ceriotti, Michele ;
Lee, Peter D. ;
Finnis, Mike W. .
PHYSICAL REVIEW B, 2010, 81 (12)
[5]  
[Anonymous], 2019, ARTIFICIAL INTELLIGE
[6]   Machine learning unifies the modeling of materials and molecules [J].
Bartok, Albert P. ;
De, Sandip ;
Poelking, Carl ;
Bernstein, Noam ;
Kermode, James R. ;
Csanyi, Gabor ;
Ceriotti, Michele .
SCIENCE ADVANCES, 2017, 3 (12)
[7]   Gaussian approximation potentials: A brief tutorial introduction [J].
Bartok, Albert P. ;
Csanyi, Gabor .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1051-1057
[8]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[9]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[10]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)