Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow

被引:30
作者
Zhang, Yu [1 ]
Srivastava, Hari M. [2 ]
Baleanu, Mihaela-Cristina [3 ]
机构
[1] North China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou, Peoples R China
[2] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[3] Mihail Sadoveanu Theoret High Sch, Bucharest 021586, Romania
关键词
Local fractional variational iteration algorithm II; non-homogeneous model; heat flow; non-differentiable functions; local fractional derivative operators; EQUATIONS;
D O I
10.1177/1687814015608567
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article, we begin with the non-homogeneous model for the non-differentiable heat flow, which is described using the local fractional vector calculus, from the first law of thermodynamics in fractal media point view. We employ the local fractional variational iteration algorithm II to solve the fractal heat equations. The obtained results show the non-differentiable behaviors of temperature fields of fractal heat flow defined on Cantor sets.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 19 条
[1]  
[Anonymous], 2014, J MATH STAT
[2]  
[Anonymous], FRACTIONAL DYNAMICS
[3]  
[Anonymous], 2013, Nonlinear Sci. Lett. A
[4]  
Baleanu D., 2015, Prog. Fract. Differ. Appl, V1, P1
[5]   Insulin-Like Growth Factor 1 Receptor and Response to Anti-IGF1R Antibody Therapy in Osteosarcoma [J].
Cao, Yu ;
Roth, Michael ;
Piperdi, Sajida ;
Montoya, Kristofer ;
Sowers, Rebecca ;
Rao, Pulivarthi ;
Geller, David ;
Houghton, Peter ;
Kolb, E. Anders ;
Gill, Jonathan ;
Gorlick, Richard .
PLOS ONE, 2014, 9 (08)
[6]   A Review of Definitions for Fractional Derivatives and Integral [J].
de Oliveira, Edmundo Capelas ;
Tenreiro Machado, Jose Antonio .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
[7]   RECONSTRUCTIVE SCHEMES FOR VARIATIONAL ITERATION METHOD WITHIN YANG-LAPLACE TRANSFORM WITH APPLICATION TO FRACTAL HEAT CONDUCTION PROBLEM [J].
Liu, Chun-Feng ;
Kong, Shan-Shan ;
Yuan, Shu-Juan .
THERMAL SCIENCE, 2013, 17 (03) :715-721
[8]   Fractional calculus for nanoscale flow and heat transfer [J].
Liu, Hong-Yan ;
He, Ji-Huan ;
Li, Zheng-Biao .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2014, 24 (06) :1227-1250
[9]   Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator [J].
Su, Wei-Hua ;
Yang, Xiao-Jun ;
Jafari, H. ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[10]   Local Fractional Laplace Variational Iteration Method for Nonhomogeneous Heat Equations Arising in Fractal Heat Flow [J].
Xu, Shu ;
Ling, Xiang ;
Cattani, Carlo ;
Xie, Gong-Nan ;
Yang, Xiao-Jun ;
Zhao, Yang .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014