Thyroid Ultrasound Images Classification using the Shearlet Coefficients and the Generic Fourier Descriptor

被引:2
作者
Aboudi, Noura [1 ]
Khlifa, Nawres [1 ]
机构
[1] Univ Tunis El Manar, Lab Biophys & Technol Med, Tunis, Tunisia
来源
VISAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4: VISAPP | 2020年
关键词
Thyroid Nodule; Feature Extraction; Shearlet Transform; Generic Fourier Descriptor; Feature Selection; Random Forest; LESION CLASSIFICATION;
D O I
10.5220/0008956902920298
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
To ameliorate the classification accuracy of the thyroid ultrasound imaging computer-aided diagnosis (CAD) system based on feature extraction, we used the Shearlet Transform (ST) to extract texture features, and the Generic Fourier Descriptor (GFD) to extract shape feature descriptor based on contours information. The ST supplies a rotation invariant descriptor at various scales. The GFD descriptor is autonomous, robust, and has no redundant features. Then, we applied a feature selection method on the extracted shearlet descriptor to build up the performance metrics. Finally, we used the objective metrics(sensitivity, specificity, and accuracy) to validate the performance of the proposed method. Experimentally, we apply our novel methods on a public dataset and we use the Support Vector Machine(SVM) and Random Forest (RF) as classifier. The obtained results prove the superiority of the proposed method.
引用
收藏
页码:292 / 298
页数:7
相关论文
共 14 条
[1]   Cost-Effective and Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScan™ Algorithms [J].
Acharya, U. R. ;
Faust, O. ;
Sree, S. V. ;
Molinari, F. ;
Garberoglio, R. ;
Suri, J. S. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2011, 10 (04) :371-380
[2]   Non-invasive automated 3D thyroid lesion classification in ultrasound: A class of ThyroScan™ systems [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Krishnan, M. Muthu Rama ;
Molinari, Filippo ;
Garberoglio, Roberto ;
Suri, Jasjit S. .
ULTRASONICS, 2012, 52 (04) :508-520
[3]  
[Anonymous], 2017, UCI REPOSITORY MACHI
[4]   A Clinical Decision Support System Using Ultrasound Textures and Radiologic Features to Distinguish Metastasis From Tumor-Free Cervical Lymph Nodes in Patients With Papillary Thyroid Carcinoma [J].
Ardakani, Ali Abbasian ;
Reiazi, Reza ;
Mohammadi, Afshin .
JOURNAL OF ULTRASOUND IN MEDICINE, 2018, 37 (11) :2527-2535
[5]   Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network [J].
Chi, Jianning ;
Walia, Ekta ;
Babyn, Paul ;
Wang, Jimmy ;
Groot, Gary ;
Eramian, Mark .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :477-486
[6]   Sparse directional image representations using the discrete shearlet transform [J].
Easley, Glenn ;
Labate, Demetrio ;
Lim, Wang-Q .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 25 (01) :25-46
[7]  
Guo K., 2006, SPARSE MULTIDIMENSIO
[8]   Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns [J].
Iakovidis, Dimitris K. ;
Keramidas, Eystratios G. ;
Maroulis, Dimitris .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2010, 50 (01) :33-41
[9]   ESTDD: Expert system for thyroid diseases diagnosis [J].
Keles, Ali ;
Keles, Ayturk .
EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (01) :242-246
[10]  
Labate D., 2005, SPIE Proc. 5914, SPIE