Application of weak equivalence transformations to a group analysis of a drift-diffusion model

被引:21
作者
Romano, V [1 ]
Torrisi, M [1 ]
机构
[1] Politecn Bari, Dipartimento Interuniv Matemat, I-70125 Bari, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 45期
关键词
D O I
10.1088/0305-4470/32/45/310
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A group analysis of a class of drift-diffusion systems is performed. In account of the presence of arbitrary constitutive functions, we look for Lie symmetries starting from the weak equivalence transformations. Applications to the transport of charges in semiconductors are presented and a special class of solutions is given for particular doping profiles.
引用
收藏
页码:7953 / 7963
页数:11
相关论文
共 19 条
[1]  
Akhatov I.Sh., 1991, J SOVIET MATH, V55, P1401
[2]  
Bluman G. W., 1989, Symmetries and Differential Equations
[3]  
FUSHCHYCH WI, 1993, SYMMETRY ANAL EXACT
[4]  
HAENSH W, 1990, DRIFT DIFFUSION EQUA
[5]  
HERIT E, 1992, J MATH PHYS, V33, P3983
[6]   PRELIMINARY GROUP CLASSIFICATION OF EQUATIONS VTT=F(X,VX)VXX+G(X,VX) [J].
IBRAGIMOV, NH ;
TORRISI, M ;
VALENTI, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (11) :2988-2995
[7]   A SIMPLE METHOD FOR GROUP-ANALYSIS AND ITS APPLICATION TO A MODEL OF DETONATION [J].
IBRAGIMOV, NH ;
TORRISI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) :3931-3937
[8]  
Ibragimov NH., 1994, CRC Handbook of Lie Group Analysis of Differential Equations
[9]  
Markowich P., 1990, SEMICONDUCTOR EQUATI, DOI 10.1007/978-3-7091-6961-2
[10]  
MELESHKO SV, 1994, PMM-J APPL MATH MEC+, V58, P629