Synthesis Control of Layered Oxide Cathodes for Sodium-Ion Batteries: A Necessary Step Toward Practicality

被引:51
作者
Lamb, Julia [1 ,2 ]
Manthiram, Arumugam [1 ,2 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
关键词
HIGH-ENERGY DENSITY; HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; NI-RICH; COPRECIPITATION; TRANSITION; O3-TYPE; OPTIMIZATION; STABILITY; MANGANESE;
D O I
10.1021/acs.chemmater.0c02435
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interest in sodium-ion battery cathode materials, particularly for grid-scale energy-storage applications, has considerably increased in the last few years, sparking a push toward industrially practical research. In addition to more full-cell and pouch-cell research, there has also been more study on the use of an industrial synthesis technique for producing sodium-based cathode materials. Hydroxide coprecipitation is the industry standard for synthesizing lithium-based layered-oxide cathode materials because it is scalable and produces materials with highly tunable particle morphology with low impurity. The tuning of particle morphology allows for improved energy density and reduced surface reactivity, leading to better stability in air and electrolyte. Despite these benefits, the ability to synthesize sodium-based layered-oxide cathode materials with beneficial particle morphology is considerably more challenging than it is for lithium-based layered oxides due to the complexity of numerous interconnected variables. We herein provide a review of the hydroxide coprecipitation method for both sodium- and lithium-based cathode materials, highlighting its benefits and the need for further studies on utilizing coprecipitated sodium-based layered-oxide materials. We then perform an in-depth analysis utilizing a combination of literature, fundamental chemistry, and experimental data to discuss the challenges of hydroxide coprecipitation and provide a framework for overcoming these challenges.
引用
收藏
页码:8431 / 8441
页数:11
相关论文
共 87 条
[1]   Novel high-capacity hybrid layered oxides NaxLi1.5-xNi0.167Co0.167Mn0.67O2 as promising cathode materials for rechargeable sodium ion batteries [J].
Bao, Shuo ;
Luo, Shao-hua ;
Wang, Zhi-yuan ;
Yan, Sheng-xue ;
Wang, Qing .
CERAMICS INTERNATIONAL, 2018, 44 (18) :22512-22519
[2]   LiNi0.5Co0.5O2 as a long-lived positive active material for lithium-ion batteries [J].
Belharouak, I ;
Tsukamoto, H ;
Amine, K .
JOURNAL OF POWER SOURCES, 2003, 119 :175-177
[3]   Revised Pourbaix diagrams for iron at 25-300 degrees C [J].
Beverskog, B ;
Puigdomenech, I .
CORROSION SCIENCE, 1996, 38 (12) :2121-2135
[4]   Toward Na-ion Batteries-Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material [J].
Buchholz, Daniel ;
Moretti, Arianna ;
Kloepsch, Richard ;
Nowak, Sascha ;
Siozios, Vassilios ;
Winter, Martin ;
Passerini, Stefano .
CHEMISTRY OF MATERIALS, 2013, 25 (02) :142-148
[5]   Preparation by a 'chimie douce' route and characterization of LiNizMn1-zO2(0.5<=z<=1) cathode materials [J].
Caurant, D ;
Baffier, N ;
Bianchi, V ;
Gregoire, G ;
Bach, S .
JOURNAL OF MATERIALS CHEMISTRY, 1996, 6 (07) :1149-1155
[6]   Synthesis by a soft chemistry route and characterization of LiNixCo1-xO2 (0<=x<=1) cathode materials [J].
Caurant, D ;
Baffier, N ;
Garcia, B ;
PereiraRamos, JP .
SOLID STATE IONICS, 1996, 91 (1-2) :45-54
[7]   Preparation of spherical LiNi0.80Co0.15Mn0.05O2 lithium-ion cathode material by continuous co-precipitation [J].
Cheralathan, K. K. ;
Kang, Na Young ;
Park, Hun Su ;
Lee, You Jin ;
Choi, Won Choon ;
Ko, Young Soo ;
Park, Yong-Ki .
JOURNAL OF POWER SOURCES, 2010, 195 (05) :1486-1494
[8]   LiNi0.74Co0.26-xMgxO2 cathode material for a Li-ion cell [J].
Cho, J .
CHEMISTRY OF MATERIALS, 2000, 12 (10) :3089-3094
[9]   Preparation of layered Li[Ni1/3Mn1/3CO1/3]O2 as a cathode for lithium secondary battery by carbonate coprecipitation method [J].
Cho, TH ;
Park, SM ;
Yoshio, M .
CHEMISTRY LETTERS, 2004, 33 (06) :704-705
[10]   A P2-type Na0.7(Ni0.6Co0.2Mn0.2)O2 cathode with excellent cyclability and rate capability for sodium ion batteries [J].
Choi, Jonghyun ;
Kim, Kyeong-Ho ;
Jung, Chul-Ho ;
Hong, Seong-Hyeon .
CHEMICAL COMMUNICATIONS, 2019, 55 (77) :11575-11578