A two-stage supervised learning approach for electricity price forecasting by leveraging different data sources

被引:49
作者
Luo, Shuman [1 ]
Weng, Yang [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Electricity price forecast; Machine learning methods; Renewables; Wind power generation; NEURAL-NETWORK; WAVELET TRANSFORM; HYBRID MODEL; PERFORMANCE; EMISSION;
D O I
10.1016/j.apenergy.2019.03.129
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Over the years, the growing penetration of renewable energy into the electricity market has resulted in a significant change in the electricity market price. This change makes the existing forecasting method prone to error, decreasing the economic benefits. Hence, more precise forecasting methods need to be developed. This paper starts with a survey and benchmark of existing machine learning approaches for forecasting the real-time market (RTM) price. While these methods provide sufficient modeling capability via supervised learning, their accuracy is still limited due to the single data source, e.g., historical price information only. In this paper, a novel two stage supervised learning approach is proposed by diversifying the data sources such as highly correlated power data. This idea is inspired by the recent load forecasting methods that have shown extremely well performances. Specifically, the proposed two-stage method, namely the rerouted method, learns two types of mapping rules. The first one is the mapping between the historical wind power and the historical price. The second is the forecasting rule for wind generation. Based on the two rules, we forecast the price via the forecasted generation and the first learned mapping between power and price. Additionally, we observed that it is not the more training data the better, leading to our validation steps to quantify the best training intervals for different datasets. We conduct comparisons of numerical results between existing methods and the proposed methods based on datasets from the Electric Reliability Council of Texas (ERCOT). For each machine learning step, we examine different learning methods, such as polynomial regression, support vector regression, neural network, and deep neural network. The results show that the proposed method is significantly better than existing approaches when renewables are involved.
引用
收藏
页码:1497 / 1512
页数:16
相关论文
共 31 条
[1]  
[Anonymous], 2016, DEEP LEARNING
[2]   Medium-Term Probabilistic Forecasting of Electricity Prices: A Hybrid Approach [J].
Bello, Antonio ;
Bunn, Derek W. ;
Reneses, Javier ;
Munoz, Antonio .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (01) :334-343
[3]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[4]   A bat optimized neural network and wavelet transform approach for short-term price forecasting [J].
Bento, P. M. R. ;
Pombo, J. A. N. ;
Calado, M. R. A. ;
Mariano, S. J. P. S. .
APPLIED ENERGY, 2018, 210 :88-97
[5]   Short-term electricity prices forecasting in a competitive market: A neural network approach [J].
Catalao, J. P. S. ;
Mariano, S. J. P. S. ;
Mendes, V. M. F. ;
Ferreira, L. A. F. M. .
ELECTRIC POWER SYSTEMS RESEARCH, 2007, 77 (10) :1297-1304
[6]   Short-term electricity prices forecasting based on support vector regression and Auto-regressive integrated moving average modeling [J].
Che, Jinxing ;
Wang, Jianzhou .
ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (10) :1911-1917
[7]   Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings [J].
Chen, Yongbao ;
Xu, Peng ;
Chu, Yiyi ;
Li, Weilin ;
Wu, Yuntao ;
Ni, Lizhou ;
Bao, Yi ;
Wang, Kun .
APPLIED ENERGY, 2017, 195 :659-670
[8]   ARIMA models to predict next-day electricity prices [J].
Contreras, J ;
Espínola, R ;
Nogales, FJ ;
Conejo, AJ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (03) :1014-1020
[9]   Deep Learning: Methods and Applications [J].
Deng, Li ;
Yu, Dong .
FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2013, 7 (3-4) :I-387
[10]   A numerical and experimental assessment of a coated diesel engine powered by high-performance nano biofuel [J].
Dhinesh, B. ;
Raj, Y. Maria Ambrose ;
Kalaiselvan, C. ;
KrishnaMoorthy, R. .
ENERGY CONVERSION AND MANAGEMENT, 2018, 171 :815-824