Supercritical cryo-compressed hydrogen storage for fuel cell electric buses

被引:84
作者
Ahluwalia, R. K. [1 ]
Peng, J. K. [1 ]
Roh, H. S. [1 ]
Hua, T. Q. [1 ]
Houchins, C. [2 ]
James, B. D. [2 ]
机构
[1] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA
[2] Strateg Anal Inc, 4075 Wilson Blvd,Suite 200, Arlington, VA 22203 USA
关键词
500-Bar cryo-compressed hydrogen storage; Dormancy; Charge and discharge cycles; Type 3 composite pressure vessels; Carbon fiber usage; Autofrettage; INSULATED PRESSURE-VESSELS; AUTOMOTIVE APPLICATIONS; CRYOGENIC HYDROGEN; CONVERSION;
D O I
10.1016/j.ijhydene.2018.04.113
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid hydrogen (LH2) truck delivery and storage at dispensing sites is likely to play an important role in an emerging H-2 infrastructure. We analyzed the performance of single phase, supercritical, on-board cryo-compressed hydrogen storage (CcH(2)) with commercially-available LH2 pump enabled single-flow refueling for application to fuel cell electric buses (FCEB). We conducted finite-element stress analyses of Type 3 CcH(2) tanks using ABAQUS for carbon fiber requirement and Fe-Safe for fatigue life. The results from these analyses indicate that, from the standpoint of weight, volume and cost, 2-mm 316 stainless steel liner is preferred to aluminium 6061 alloy in meeting the required 15,000 charge-discharge cycles for 350-700 bar storage pressures. Compared to the Type 3, 350 bar, ambient-temperature H-2 storage systems in current demonstration FCEBs, 500-bar CcH(2) storage system is projected to achieve 91% improvement in gravimetric capacity, 175% improvement in volumetric capacity, 46% reduction in carbon fiber composite mass, and 21% lower system cost, while exceeding >7 day loss-free dormancy with initially 85% full H-2 tank. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10215 / 10231
页数:17
相关论文
共 35 条
[31]   The isentropic expansion energy of compressed and cryogenic hydrogen [J].
Petitpas, G. ;
Aceves, S. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (35) :20319-20323
[32]   Modeling of sudden hydrogen expansion from cryogenic pressure vessel failure [J].
Petitpas, G. ;
Aceves, S. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (19) :8190-8198
[33]   Para-H2 to ortho-H2 conversion in a full-scale automotive cryogenic pressurized hydrogen storage up to 345 bar [J].
Petitpas, Guillaume ;
Aceves, Salvador M. ;
Matthews, Manyalibo J. ;
Smith, James R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (12) :6533-6547
[34]   Vehicle refueling with liquid hydrogen thermal compression [J].
Petitpas, Guillaume ;
Aceves, Salvador M. ;
Gupta, Nikunj .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (15) :11448-11457
[35]   Status of hydrogen fuel cell electric buses worldwide [J].
Thanh Hua ;
Ahluwalia, Rajesh ;
Eudy, Leslie ;
Singer, Gregg ;
Jermer, Boris ;
Asselin-Miller, Nick ;
Wessel, Silvia ;
Patterson, Timothy ;
Marcinkoski, Jason .
JOURNAL OF POWER SOURCES, 2014, 269 :975-993