Supercritical cryo-compressed hydrogen storage for fuel cell electric buses

被引:84
作者
Ahluwalia, R. K. [1 ]
Peng, J. K. [1 ]
Roh, H. S. [1 ]
Hua, T. Q. [1 ]
Houchins, C. [2 ]
James, B. D. [2 ]
机构
[1] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA
[2] Strateg Anal Inc, 4075 Wilson Blvd,Suite 200, Arlington, VA 22203 USA
关键词
500-Bar cryo-compressed hydrogen storage; Dormancy; Charge and discharge cycles; Type 3 composite pressure vessels; Carbon fiber usage; Autofrettage; INSULATED PRESSURE-VESSELS; AUTOMOTIVE APPLICATIONS; CRYOGENIC HYDROGEN; CONVERSION;
D O I
10.1016/j.ijhydene.2018.04.113
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid hydrogen (LH2) truck delivery and storage at dispensing sites is likely to play an important role in an emerging H-2 infrastructure. We analyzed the performance of single phase, supercritical, on-board cryo-compressed hydrogen storage (CcH(2)) with commercially-available LH2 pump enabled single-flow refueling for application to fuel cell electric buses (FCEB). We conducted finite-element stress analyses of Type 3 CcH(2) tanks using ABAQUS for carbon fiber requirement and Fe-Safe for fatigue life. The results from these analyses indicate that, from the standpoint of weight, volume and cost, 2-mm 316 stainless steel liner is preferred to aluminium 6061 alloy in meeting the required 15,000 charge-discharge cycles for 350-700 bar storage pressures. Compared to the Type 3, 350 bar, ambient-temperature H-2 storage systems in current demonstration FCEBs, 500-bar CcH(2) storage system is projected to achieve 91% improvement in gravimetric capacity, 175% improvement in volumetric capacity, 46% reduction in carbon fiber composite mass, and 21% lower system cost, while exceeding >7 day loss-free dormancy with initially 85% full H-2 tank. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10215 / 10231
页数:17
相关论文
共 35 条
[1]   Vehicular storage of hydrogen in insulated pressure vessels [J].
Aceves, Salvador M. ;
Berry, Gene D. ;
Martinez-Frias, Joel ;
Espinosa-Loza, Francisco .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (15) :2274-2283
[2]   Safe, long range, inexpensive and rapidly refuelable hydrogen vehicles with cryogenic pressure vessels [J].
Aceves, Salvador M. ;
Petitpas, Guillaume ;
Espinosa-Loza, Francisco ;
Matthews, Manyalibo J. ;
Ledesma-Orozco, Elias .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (05) :2480-2489
[3]   High-density automotive hydrogen storage with cryogenic capable pressure vessels [J].
Aceves, Salvador M. ;
Espinosa-Loza, Francisco ;
Ledesma-Orozco, Elias ;
Ross, Timothy O. ;
Weisberg, Andrew H. ;
Brunner, Tobias C. ;
Kircher, Oliver .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (03) :1219-1226
[4]   Analytical and experimental evaluation of insulated pressure vessels for cryogenic hydrogen storage [J].
Aceves, SM ;
Martinez-Frias, J ;
Garcia-Villazana, O .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (11) :1075-1085
[5]   Dynamics of cryogenic hydrogen storage in insulated pressure vessels for automotive applications [J].
Ahluwalia, R. K. ;
Peng, J. K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (17) :4622-4633
[6]   Fuel cycle efficiencies of different automotive on-board hydrogen storage options [J].
Ahluwalia, R. K. ;
Hua, T. Q. ;
Peng, J. -K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (15) :3592-3602
[7]   On-board and Off-board performance of hydrogen storage options for light-duty vehicles [J].
Ahluwalia, R. K. ;
Hua, T. Q. ;
Peng, J. K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (03) :2891-2910
[8]   Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications [J].
Ahluwalia, R. K. ;
HuaA, T. Q. ;
Peng, J. -K. ;
Lasher, S. ;
McKenney, K. ;
Sinha, J. ;
Gardiner, M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (09) :4171-4184
[9]  
[Anonymous], EXP MECH
[10]  
[Anonymous], 2012, STAFF REP IN STAT RE