K3 surfaces with a symplectic automorphism of order 11

被引:0
作者
Dolgachev, Igor V. [1 ]
Keum, JongHae [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
关键词
FINITE-GROUPS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify possible finite groups of symplectic automorphisms of K3 surfaces of order divisible by 11. The characteristic of the ground field must be equal to 11. The complete list of such groups consists of five groups: the cyclic group C-11 of order 11, C-11 (sic) C-5, PSL2(F-11) and the Mathieu groups M-11, M-22. We also show that a surface X admitting an automorphism g of order 11 admits a g-invariant elliptic fibration with the Jacobian fibration isomorphic to one of explicitly given elliptic K3 surfaces.
引用
收藏
页码:799 / 818
页数:20
相关论文
共 15 条
[1]  
ARTIN M, 1974, ANN SCI ECOLE NORM S, V7, P543
[2]  
COSSEC F, 1989, ENRIQUES SURFACES, V1
[3]  
Dolgachev I, 2001, J ALGEBRAIC GEOM, V10, P101
[4]   Finite groups of symplectic automorphisms of K3 surfaces in positive characteristic [J].
Dolgachev, Igor V. ;
Keum, JongHae .
ANNALS OF MATHEMATICS, 2009, 169 (01) :269-313
[5]   The Artin invariant of supersingular weighted Delsarte K3 surfaces [J].
Goto, Y .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (02) :359-363
[6]  
ILLUSIE L., 1975, Proc. Sympos. Pure Math., V29, P459
[7]  
KONDO S, INT MATH RES NOTICES
[8]   FINITE-GROUPS OF AUTOMORPHISMS OF K3 SURFACES AND THE MATHIEU-GROUP [J].
MUKAI, S .
INVENTIONES MATHEMATICAE, 1988, 94 (01) :183-221
[9]  
NYGAARD NO, 1980, COMPOS MATH, V42, P245
[10]  
Ogus A., 1979, Asterisque, VII, P3